DOI QR코드

DOI QR Code

The Synthesis of Silica Aerogel in the Macroporous Ceramic Structure by Sono-gel Process and Supercritical Drying Process

초음파 겔화 공정과 초임계 건조 공정을 이용한 다공성 세라믹스 구조체 내부에 실리카 에어로겔 합성

  • Hong, Sun-Wook (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Song, In-Hyuck (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Park, Young-Jo (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Yun, Hui-Suk (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Hwang, Ki-Young (Agency for Defense Development) ;
  • Rhee, Young-Woo (Department of Chemistry Engineering, Chungnam National University)
  • 홍선욱 (재료연구소 엔지니어링세라믹그룹) ;
  • 송인혁 (재료연구소 엔지니어링세라믹그룹) ;
  • 박영조 (재료연구소 엔지니어링세라믹그룹) ;
  • 윤희숙 (재료연구소 엔지니어링세라믹그룹) ;
  • 황기영 (국방과학연구소) ;
  • 이영우 (충남대학교 화학공학과)
  • Received : 2010.10.10
  • Accepted : 2010.10.29
  • Published : 2010.11.30

Abstract

The synthesis behavior of nanoporous silica aerogel in the macroporous ceramic structure was observed using TEOS as a source material and glycerol as a DCCA(dry control chemical additive). Silica aerogel in the macroporous ceramic structure were synthesized through a sono-gel process. The wet gel in the macroporous ceramic structure were aged in ethanol for 72 h at $50^{\circ}C$. The aged wet gel was dried under supercritical drying condition. The addition of glycerol has a role of giving the uniform pore size distribution. The reproducibility of aerogel in the macroporous ceramic was improved in the glycerol(0.05 mol%) added to the silica sol and TEOS : $H_2O$=1 : 12.

Keywords

References

  1. S. H. Chae, Y.-W. Kim, I. H. Song, H. D. Kim, and J. S. Bae, “Effects of Template Size and Content on Porosity and Strength of Macroporous Zirconia Ceramics,” J. Kor. Ceram. Soc., 46 [1] 35-40 (2009). https://doi.org/10.4191/KCERS.2009.46.1.035
  2. I. S. Han, J. C. Park, S. Y. Kim, K. S. Hong, and H. J. Hwang, “Fabrication and Network Strengthening of Monolithic Silica Aerogels Using Water Glass,” J. Kor. Ceram. Soc., 44 [3] 162-68 (2007). https://doi.org/10.4191/KCERS.2007.44.3.162
  3. P. H. Tewari, A. J. Hunt, and K. D. Loffus, “Ambient-Temperature Supercritical Drying of Transparent Silica Aerogel,” Mater. Lett., 3 [9-10] 363-67 (1985). https://doi.org/10.1016/0167-577X(85)90077-1
  4. M. Cantin, M. Casse. L. Koch. R. Jouan. P. Messtran D. Roussel. P. Bonin, J. Moutel, and S. J. Techner, “Silica Aerogels Used as Cerenkove Radiators,” Nucl. Instrum. Meth., 118 177-82 (1974). https://doi.org/10.1016/0029-554X(74)90700-9
  5. P. H. Tewari. A. J. Hunt, and K. D. Lofftus. “Advances in Production of Transparent Silica Aerogels for Window Glazings,” pp. 31 in Aerogels. ed J. Fricke, springer progress in physics, Springer, Heidelberg, New York, 1986.
  6. S. D. Bhagat, Y.-H. Kim, Y. S. Ahn, and J. G. Yeo, “Rapid Synthesis of Water-Glass Based Aerogels by In-situ Surface Modification of the Hydrogels,” App. Surf. Sci., 253 3231-36 (2007). https://doi.org/10.1016/j.apsusc.2006.07.016
  7. N. Hüsing and U. Schubert, “Aerogel-Airy Materials: Chemistry, and Properties,” Angew. Chem. Int. Ed., 37 22-45 (1998). https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
  8. A. Soleimani Dorcheh, and M. H. Abbasi, “Silica Aerogl; Synthesis, Properties and Characterization,” J. Mater. Proc. Technol., 199 10-26 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.060
  9. J. Zarzycki and L. Esquivias, “Sonogel, An Aternative Method in Sol-gel Processing,” Third International Conference in Ultrastructure Processing of Ceramics, Ceramics, Glasses and Composite session, San Diego, Feb. 23-7, 1987.
  10. S. Y. Kim, K. H. Lee, S. Y. Bae, and K.-P. Yoo, “Syntesis of Transparent Hydrophobic Low-Density Silica Aerogel by Modified Two-Step Sol-Gel Processing and Low Temperature Supercritical Drying,” Kor. Chem. Eng. Res., 36 [2] 293-99 (1998).
  11. A. Venkateswara RaO, G. M. Pajonk, D. Haranath, and P. B. Wagh, “Effect of Glycerol on Monolithicity, Density, Microhardness and Sintering Temperature of TMOS Silica Aerogels,” Micro. Mater., 12 63-9 (1997). https://doi.org/10.1016/S0927-6513(97)00066-7
  12. A. Venkateswara RaO and Manish M. Kulkarni, “Effect of Glycerol Additive on Physical Properties of Hydrophobic Silica Aerogels,” Mater. Chem. Phys., 77 819-25 (2002).
  13. S. W. Kuk, “A Study on Synthesis and Characterization of Silica Aerogel,” pp. 9-55, MS Thesis, Hanyang University, Seoul, 2007.
  14. D. J. Suh and T. J. Park, “Effect of Aging Conditions on the Pore Structural Properties of Titania Aerogels,” J. Mater. Sci. Lett., 16 490-92 (2007). https://doi.org/10.1023/A:1018576629495