DOI QR코드

DOI QR Code

미세 간극을 지나는 축대칭 내부 유동의 압축성 효과 분석

Compressibility Effect in the Axisymmetric Internal Flow Past a Microgap

  • 투고 : 2010.02.08
  • 심사 : 2010.10.04
  • 발행 : 2010.12.01

초록

본 연구에서는 미세 간극을 지나는 압축성 내부 유동 문제에 대해 간략화된 축대칭 모형을 제안하였다. 수치 해석과 실험을 통하여 미세 간극에 의해 형성되는 고리 모양의 좁은 단면을 지나서 아음속 유동이 가속되어 발생하는 초킹 현상을 관찰하였다. 질량 유량과 차압 사이의 관계를 구하고, 대응되는 실험 결과와 비교하여 수치 결과의 타당성에 대해 논하였다. 또한 축대칭 압축성 Navier-Stokes 방정식의 수치해석을 통하여 초킹 이후의 초음속 제트 유동장의 형성 및 이의 회절을 가시화하였다. 본 연구를 통하여 자동차 동력계의 밸브 등 많은 응용 분야를 지닌 미세 간극의 축대칭 압축성 유동에 대한 물리적 이해를 확대하였다.

In this study, a simplified axisymmetric model is proposed for the problem of compressible internal flow past a microgap. Using numerical and experimental methods, the phenomena of choked flows are observed; these flows are induced by the acceleration of subsonic flows past the narrow cross-section of an annular shape made by a microgap. The relation between mass flow rate and differential pressure is obtained, and by comparing the result with experimental results, the reliability of the numerical results is discussed. The generation of a supersonic jet flow and its diffraction are visualized by performing the numerical analysis of axisymmetric compressible Navier-Stokes equations. This investigation greatly extends the physical understanding of the axisymmetric compressible flow, which has a wide range of engineering applications, e.g., in the case of valves in automotive power systems.

키워드

참고문헌

  1. http://en.wikipedia.org/wiki/PCV_valve
  2. Dhariwal, H. C., 1997, "Control of Blowby Emissions and Lubricating Consumption in I. C. Engines," Energy Conversion and Management, Vol. 38, No. 10-13, pp. 1267-1274. https://doi.org/10.1016/S0196-8904(96)00156-2
  3. Chang, S. M., 2006, "Characteristics Measurement of PCV Valves for Automobiles," Proceedings of the KSME, KSME 2006R102, Fall Annual Meeting, pp.6-9.
  4. Lee, J. H., Choi, Y. H. and Lee, Y. W., 2005, "Computational Analysis of Flow Characteristics of a PCV Valves," Transactions of KSAE, Vol. 13, No. 4, pp. 66-77.
  5. Anderson, J. D., 1990, Modern Compressible Flow, McGraw-Hill, NewYork, 2e, pp. 147-185.
  6. Liepmann, H. W. and Roshko A., 1993, Elements of Gas Dyanmics, Dover, New York, pp. 39-61.
  7. Song, S. M., Kwon, O. H. and Lee, Y. W., 2007, "Effect of the Differential Pressure by the Blow-by Gas Flow on the PCV Valve with a Crack," International Journal of Automotive Technology, Vol. 8, No. 2, pp. 219-224.
  8. Addy, A. L., 1981, "Effects of Axisymmetric Sonic Nozzle Geometry on Mach Disk Characteristics," AIAA J., Vol. 19, No. 1, pp. 121-126. https://doi.org/10.2514/3.7751
  9. Shi, W., Miyamoto, M., Katoh, Y. and Kurima J., 2001, "Choked flow of Low Density Gas in a Narrow Parallel-Plate Channel with Adiabatic Walls," Int. J. Heat and Mass Transfer, Vol. 44, pp. 2555-2565. https://doi.org/10.1016/S0017-9310(00)00289-1
  10. Henderson, B. and Powell, A., 1997, "The Use of an Array to Explain the Sound Characteristics of Secondary Small Plate Tones Produced by the Impingement of an Axisymmetric Choked Jet," J. Acoust. Soc. Am., Vol. 102, No. 3, pp. 1454-1462. https://doi.org/10.1121/1.420060
  11. Jeong, M. S., Kim, H. S. and Kim, H. D., 2001, "A Fundamental Study of the Supersonic Microjet," Proceedings of KSME, KSME 01F248, Fall Annual Meeting, pp. 622-627.
  12. Chang, S. M., Unsteady Shock Wave-Vortex Interactions in the Compressible Shear Layer, Ph.D. Thesis, DAE965342, KAIST.
  13. Chang, S. M., Chang, K. S. and Lee, S., 2004, "Reflection and Penetration of a Shock Wave Interacting with a Starting Vortex," AIAA J., Vol. 42, No. 4, pp. 796-805. https://doi.org/10.2514/1.9560
  14. Wasistho, B., Geurts, B. J. and Kuerten, J. G. M., 1997, "Simulation Techniques for Spatially Evolving Instabilities in Compressible Flow over a Flat Plate," Computers and Fluids, Vol. 26, No. 7, pp. 713-739. https://doi.org/10.1016/S0045-7930(97)00021-2
  15. Wyganski, I. and Fiedler, H., 1969, "Some Measurements in the Self-Preserving Jet," J. Fluid Mech., Vol. 38, Pt. 3, pp. 577-612. https://doi.org/10.1017/S0022112069000358
  16. Noh, T. H. and Chang, S. M., 2007, "Correlations Between the Opening Angle of a Louver and Flow Rate for the Efficient Control of a Large Fan," Proceedings of KSCFE, Fall Annual Meeting, pp. 272-276.
  17. http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/men fre.html#c3
  18. Anderson, J. D., 1989, Hypersonic and High Temperature Gas Dynamics, McGraw-Hill, NewYork, pp. 20-23.

피인용 문헌

  1. MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1 vol.21, pp.2, 2016, https://doi.org/10.6112/kscfe.2016.21.2.112