Genetic Diversity and Discrimination of Recently Distributed Korean Cultivars by SSR Markers

SSR 마커에 의한 최근 육성 보급된 한국 벼 품종의 다양성과 품종 판별

  • Sun, Ming-Mao (Department of Crop Science, Chungbuk National University) ;
  • Choi, Keun-Jin (Korea Seed & Variety Service) ;
  • Kim, Hong-Sig (Department of Crop Science, Chungbuk National University) ;
  • Song, Beom-Heon (Department of Crop Science, Chungbuk National University) ;
  • Woo, Sun-Hee (Department of Crop Science, Chungbuk National University) ;
  • Lee, Chul-Won (Department of Crop Science, Chungbuk National University) ;
  • Jong, Seung-Keun (Department of Crop Science, Chungbuk National University) ;
  • Cho, Yong-Gu (Department of Crop Science, Chungbuk National University)
  • ;
  • 최근진 (국립종자관리소) ;
  • 김홍식 (충북대학교 농업생명환경대학) ;
  • 송범헌 (충북대학교 농업생명환경대학) ;
  • 우선희 (충북대학교 농업생명환경대학) ;
  • 이철원 (충북대학교 농업생명환경대학) ;
  • 정승근 (충북대학교 농업생명환경대학) ;
  • 조용구 (충북대학교 농업생명환경대학)
  • Received : 2009.06.11
  • Published : 20090600

Abstract

This study was undertaken to investigate the genetic diversity and to develop a technique for cultivar discrimination using SSR markers in rice. Sixty-seven recently distributed rice cultivars in Korea from 1998 to 2005 were evaluated by 20 SSR markers. A total of 149 alleles were produced ranging from 4 to 14 alleles with an average of 7.5 alleles per locus. The molecular weight of alleles per locus varied from 4 bp (RM253) to 51 bp (RM335), and PIC values ranged from 0.45 (RM202) to 0.87 (RM204) with an average of 0.67. Of them, seven markers, RM204, RM257, RM21, RM224, RM249, RM253, and RM264, were selected as key markers for differentiating rice varieties. The seven markers produced a total of 67 alleles with an average of 9.6 alleles per marker. PIC values ranged from 0.48 (RM253) to 0.87 (RM204) with an average of 0.72. The 63 cultivars (94%) out of 67 cultivars could be individually identified by the genotype using the seven SSR markers, which will be applicable to discriminating rice cultivars.

국내에서 육성된 벼 품종 중에서 1998년부터 2005년까지 국립종자관리소를 통하여 보급된 67개 벼 품종을 가지고 벼 11개 염색체로부터 선발한 20개 SSR 마커들로 분석한 결과 총 대립인자수는 149개였으며 대립인자 수의 범위는 4~14개이었고 평균 대립인자 수는 7.5개였다. 대립인자들의 분자량의 변이는 RM335에서 51bp로 가장 컸고 RM253이 4 bp로서 가장 작았다. 분석에 사용한 20개 SSR 마커의 PIC값은 0.45(RM202) ~ 0.87(RM204)의 범위이었으며 평균 PIC값은 0.67이었다. 벼의 품종판별 기술을 확립하기 위하여 20개 SSR 마커 중에서 7개의 SSR 마커(RM204, RM257, RM21, RM224, RM249, RM253 및 RM264)를 이용하였는데, 총 대립인자 수는 67개이었고, 범위는 4~14개이었으며, 평균 대립인자 수는 9.6개이었다. PIC값은 0.48(RM253) ~ 0.87(RM204)의 범위이었으며, 평균 PIC값은 0.72이었다. 7개 SSR 마커의 대립인자들의 조합으로 7단계의 판별을 통하여 총 67품종 중에서 63품종이 구별되어 약 94%가 판별되었다. 판별 1단계에서 RM204로 판별하였을 때 일미벼와 동진찰벼의 2품종만이, 2단계의 RM257로 화동벼 등 15품종이, 3단계의 RM21로는 수라벼 등 23품종이, 4단계의 RM224로는 운광벼 등 10품종이, 5단계의 RM249로는 만안벼 등 6품종이, 6단계에서는 RM253으로 신동진벼 등 3품종이, 7단계에는 RM264로 화영벼 등 3품종이 판별되었다. 이와 같이 SSR 마커의 대립인자들을 효과적으로 조합하여 이용하면 동일한 품종명으로 알려져 있지만 서로 다른 벼 품종의 판별에 효과적으로 이용될 수 있을 것으로 전망된다.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. Bernet G. P., S. Bramardi, D. Calvache, E.A. Carbonell, and M.J. Asins. 2003. Applicability of molecular markers in the context of protection of new varieties of cucumber. Plant Breeding 122:146-152 https://doi.org/10.1046/j.1439-0523.2003.00838.x
  2. Brondani C, Pereira R, Brondani V, Rangel PHN, and Ferreira ME. 2001. Development and mapping of Oryza glumaepatula-derived microsatellite markers in the interspecific cross Oryza glumaepatula X O. sativa. Hereditas 134:59-71 https://doi.org/10.1111/j.1601-5223.2001.00059.x
  3. Cho Y.G., McCouch S.R., Kuiper M., Kang M.R., Pot J., Groenen J.T.M., Eun M.Y. 1998. Integrated map of AFLP, SSLP, and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theoretical and Applied Genetics 97:370-380 https://doi.org/10.1007/s001220050907
  4. Cho Y.G, T. Ishii, S. Temnykh, X. Chen, L. Lipovich, S.R. McCouch. 2000. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics 100:713-722 https://doi.org/10.1007/s001220051343
  5. Donini, P., P. Stephenson, G.J. Bryan, and R. Koebner. 1998. The potential of microsatellites for high throughout genetic diversity assesment in wheat and barley. Gen. Resources and Crop Evol. 45:415-421 https://doi.org/10.1023/A:1008612917967
  6. Garris A, Tai T, Coburn J, Kresovich S, McCouch S. 2005. Genetic structure and diversity in Oryza sativa L. Genetics 169:1631-1658 https://doi.org/10.1534/genetics.104.035642
  7. Ji, H.S., H.J. Koh, S.U. Park, and S.R. McCouch. 1998. Varietal identification in japonica rice using microsatellite DNA markers. Korean J. Breed. 30(4):350-360
  8. Kang H.W, Cho Y.G, Yoon W.H, and Eun M.Y. 1998. Rapid Genotype Analyses Using DNA Extracted from Single Half Seed of Rice seeds. Korean J Breeding 30(1):1-9
  9. Kim S.H, Jung J.W, Moon J.k, Woo S.H, Cho Y.G, Jong S.K, Kim H.S. 2006. Discrimination of Korean soybean cultivars by SSR markers. Korean J. Crop Sci. 51(7):658-668
  10. Kobayashi S.I. and T. Yoshida. 2005. Identification of main paddy rice cultivars in Tochigi Prefecture by RAPD analysis. Jpn. J. Crop Sci 74(2):207-211 https://doi.org/10.1626/jcs.74.207
  11. Kwon S.J., S.N. Ahn, H.C. Hong, Y.K. Kim, H.G. Hwang, H.C. Choi, H.P. Moon. 1999. Genetic diversity of Korean Japonica cultivars. Korean J. Breed. 31(3):268-275
  12. Kwon Y.S., J.Y. Moon, Y.S. Kwon, D.Y. Park, W.M. Yoon, I.H. Song, and S.I. Yi. 2003. AFLP analysis for cultivar discrimination in radish and chinese cabbage. Korean J. Breed. 35(5):319-328
  13. Liu, K., and S. Muse. 2004. PowerMarker: New Genetic Data Analysis Software, Version 3.25 (http://www.powermarker.net)
  14. McCouch S.R, Chen X, Panaud O, Temnykh S, Xu Y, Cho Y.G, Huang-N, Ishii T, Blair M.W 1997. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Molecular Biology 35:89-99 https://doi.org/10.1023/A:1005711431474
  15. Monna L, Ohta R, Masuda H, Koike A and Minobe Y. 2006. Genome-wide Searching of Single-nucleotide Polymorphisms among Eight Distantly and Closely Related Rice Cultivars (Oryza sativa L.) and a Wild Accession (Oryza rufipogon Griff.). DNA Research 13(2):43-51 https://doi.org/10.1093/dnares/dsi030
  16. Semon M, Nielsen R, Jones M, McCouch S. 2005. The population structure of African cultivated rice Oryza Glaberrima (Steud.): evidence for elevated levels of LD caused by admixture with O. sativa and ecological adaptation. Genetics 169:1639-1647 https://doi.org/10.1534/genetics.104.033175
  17. Song MT, Kim KM, Jong SK, Lee JH, Cho YS, Gu JH, Lee SB, Choi SH, Hwang HG. 2003. Comparison of DNA-based and Pedigree-based Genetic Similarity among Korean Rice Cultivars. Korean J. Genetics 25(3):223-230
  18. Song, Q.J., C.V. Quigley, R.L. Nelson, T.E. Carter, H.R. Boerma, J.L. Strachan, and P.B. Cregan. 1999. A selected set of trinucleotide simple sequence repeat markers for soybean cultivar identification. Plant Varieties and Seeds 12:207-220
  19. Tamura K, Dudley J, Nei M & Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596-1599 https://doi.org/10.1093/molbev/msm092
  20. Temnykh S, WD Park, N Ayres, S Cartinhour, N Hauck, L Lipovich, YG Cho, T Ishii, SR McCouch. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics 100:697-712 https://doi.org/10.1007/s001220051342
  21. Uchimura, Y., M. Frusho, and T. Yoshida. 2004. Identification of japanese two-rowed barley cultivars by DNA markers. Jpn. Crop Sci. 73(1):35-41 https://doi.org/10.1626/jcs.73.35
  22. Wang, Z.Y. and S.D. Tansley. 1989. Restriction fragment length pollymorphism in Oryza sativa L. Genome 32:1113-1118 https://doi.org/10.1139/g89-563
  23. Wu, K.S. and S.D. Tansley. 1993. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol. Gen. Genet. 245:187-194 https://doi.org/10.1007/BF00280220
  24. Zhang L.S., V. Le Clere, S. Li, and D. Zhang. 2005. Establishment of an effective set of simple sequence repeat markers for sunflower variety identification and diversity assesment. Can. J. Bot. 83:66-72 https://doi.org/10.1139/b04-155