Chloroplast-targeted Expression of PsAPX1 Enhances Tolerance to Various Environmental Stresses in Transgenic Rice

엽록체에 과발현된 PsAPX1 유전자 형질전환 벼의 다양한 환경스트레스 내성 증진

  • 박향미 (농촌진흥청 국립식량과학원) ;
  • 김율호 (농촌진흥청 국립식량과학원) ;
  • 최만수 (농촌진흥청 국립식량과학원) ;
  • 이재은 (농촌진흥청 국립식량과학원) ;
  • 최인배 (농촌진흥청 국립식량과학원) ;
  • 최임수 (농촌진흥청 국립식량과학원) ;
  • 신동범 (농촌진흥청 국립식량과학원) ;
  • 이장용 (농촌진흥청 국립농업과학원) ;
  • 곽상수 (한국생명공학연구원) ;
  • 권석윤 (한국생명공학연구원)
  • Received : 2009.09.06
  • Published : 20090900

Abstract

Oxidative stress is a major damaging factor for plants exposed to environmental stresses. In order to develop transgenic rice plants with enhanced tolerance to various environmental stresses, PsAPX1, the gene of ascorbate peroxidase isolated from Pisum sativum was expressed in chloroplast under the control of an oxidative stress inducible sweet potato peroxidase2 (SWPA2) promoter (referred to as PsAPX1 plants). PsAPX1 transgenic plants showed enhanced tolerance to various environmental stresses, such as 170 mM NaCl, UV-B, ozone, 20% PEG, and drought in compared with non-transgenic (NT) plants. These results suggest that chloroplast-targeted over-expression of PsAPX1 gene could be very useful strategy for developing transgenic rice plants with increased tolerance to environmental stresses.

1. 본 연구에서는 완두유래의 세포질성 PsAPX1 유전자를 대상으로 산화스트레스 유도성 프로모터를 연결하여 엽록체에 targeting 되는 과발현 운반체를 제작하고 벼에 도입한 결과 형질전환체에서 도입유전자 수가 1~3 copy인 것으로 나타나, 적은 수의 유전자가 안정적으로 도입되었음을 확인하였다. 2. 염, 오존, 자외선, 한발과 같은 다양한 환경스트레스 조건에서 내성이 증진된 우수 계통을 선발하기 위하여 작성된 형질전환 벼 계통들을 대상으로 생물검정을 실시한 결과, 독립계통별로 스트레스원에 대한 반응에 차이가 있음을 확인하였으며, 오존이나 자외선과 같은 산화스트레스 조건에서 내성이 증진된 우수 계통들을 선발하였다. 3. 이러한 결과를 바탕으로, 다양한 환경스트레스에 내성이 증진된 우수한 형질전환 벼 계통들을 선발하기 위하여 최소한의 독립라인을 작성하여야 함을 확인하였으며, 선발된 계통들은 새로운 육종 소재로 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Allen RD, Webb RP, Schake SA. 1997. Use of transgenic plants to study antioxidant defenses. Free Radic Biol Med 23:473-479 https://doi.org/10.1016/S0891-5849(97)00107-X
  2. Asada K, and Takahashi M. 1987. Production and scavenging of active oxygen in photosynthesis. In 'Photoinhibition,' eds. Kyle, D.L., Osmond, C.B., and Arntzen, C.J., Elsevier Scientific Publishers, Oxford, pp. 227-287
  3. Asada K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  4. Ashmore M, Sylvia T, Lisa E. 2006. Ozone-a significant threat to future world food production? New Phytologist. 170:201-204 https://doi.org/10.1111/j.1469-8137.2006.01709.x
  5. Hidema J. and Kumagai T. 2006. Sensitivity of rice to ultraviolet-B radiation. Annals of Botany. 97:933-942 https://doi.org/10.1093/aob/mcl044
  6. Hong CY, Hsu YT, Tsai YC, Kao CH. 2007. Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J Exp Bot. 58:3273-3283 https://doi.org/10.1093/jxb/erm174
  7. Ishikawa T and S. Yoshikawa. 2008. Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci. Biotechnol. Biochem. 72(5):1143-1154 https://doi.org/10.1271/bbb.80062
  8. Kaiser, W.M. 1976. The effect of hydrogen peroxide on $CO_{2}$ fixation of isolated intact chloroplasts. Biochem. Biophys. Acta, 440:476-482 https://doi.org/10.1016/0005-2728(76)90035-9
  9. Kim KY, Hur KH, Lee HS, Kwon SY, Hur Y, Kwak SS. 1999. Molecular characterization of two anionic peroxidase cDNAs isolated from suspension cultures of sweetpotato. Mol Gen Genet 261:941-947 https://doi.org/10.1007/s004380051041
  10. Kim KY, Kwon SY, Lee HS, Hur Y, Bang JW, Kwak SS. 2003. A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol Biol 51:831-838 https://doi.org/10.1023/A:1023045218815
  11. Kim YH, Lee JY, Sohn SI, Lee BK, Lee MS, Hong MY, Kim JK, Cho JH. 2007. Efficient plant transformation method mediated by Agrobacterium tumefaciens. Korea Patent. 10-0736209
  12. Kwon SY, Jeong YZ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS. 2002. Enhanced tolerance of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologenmediated oxidative stress. Plant Cell Environ. 25:873-882 https://doi.org/10.1046/j.1365-3040.2002.00870.x
  13. Lee HS, Kim KY, Kwon SY, Kwak SS. 2002. Development of industrial transgenic plants using antioxidant enzyme genes. Korean J. Plant Biotechnology. 29(2):69-77 https://doi.org/10.5010/JPB.2002.29.2.069
  14. Lee SH, Ahsani N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH. 2007. Simultaneous over expression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fascue plants confers increased tolerance to a wide range of abiotic stresses. Journal of Plant Physiology. 164:1626-1638 https://doi.org/10.1016/j.jplph.2007.01.003
  15. Manickavelu A, N. Nadarajan, S.K. Ganesh, R.P. Gnanamalar, R. Chandra Babu. 2006. Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul. 50:121-138 https://doi.org/10.1007/s10725-006-9109-3
  16. Mano J, Ohno C, Yoshinori D, Asada K. 2001. Chloroplastic ascorbate peroxidase is the primary target of methylviologen-induced photooxidative stress in spinach leaves: its relevance to monodehydroascorbate radical detected with in vivo ESR. Biochemica et Biophysica Acta. 1504:275-287 https://doi.org/10.1016/S0005-2728(00)00256-5
  17. Mittler, R. and Zilinskas, B.A. 1991. Molecular cloning and nucleotide sequence analysis of a cDNA encoding pea cytosolic ascorbate peroxidase. FEBS Lett. 289(2):257-259 https://doi.org/10.1016/0014-5793(91)81083-K
  18. Murgia I., Tarantino D., Vannini C., Bracale M., Carravieri S., Soave C. 2004. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photo-oxidative stress and to nitric oxide-induced cell death. Plant J. 38:940-953 https://doi.org/10.1111/j.1365-313X.2004.02092.x
  19. Rhoades JD and Loveday J. 1990. Salinity in irrigated agriculture. in American Society of Civil Engineers, Irrigation of Agricultural Crops (Steward BA and Nielsen DR eds), Am Soc Agronomists, Monograph 30:1089-1142
  20. Rogers S and Benich A. 1994. Extraction of total DNA from plants, algae and fungi In: Plant Molecular Biology Manual. S. A. Gelvin SB. Dordrecht, The Netherlands, Kluwer Academic Publisher. 1-8
  21. Sasaki M, Takeshita S, Oyanagi T, Miyake Y, Sakata T. 2002. Increasing trend of biologically active solar ultraviolet-B irradiation in mid-latitude Japan in the 1990s. Optical Engineering. 41:3062-3069 https://doi.org/10.1117/1.1516823
  22. Smirnoff, N. 2000. Ascorbate acid: metabolism and functions of a multi-facetted molecule. Curr. Oppin. Plant Biol. 3:229-235 https://doi.org/10.1016/S1369-5266(00)80070-9
  23. Sohn SI, Kim YH, Cho JH, Kim JK, Lee JY. 2006. An efficient selection scheme for agrobacterium-mediated cotransformation of rice using two selectable marker genes hpt and bar. Korean J. Breed. 38:173-179
  24. Tang Li, Kwon SY, Kim SH, Kim JS, Choi JS, Kwang YC, Chang KS, Kwak SS, Lee HS. 2006. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell. Rep. 25:1380-1386 https://doi.org/10.1007/s00299-006-0199-1
  25. Teixeira FK, Menezes-Benavente L, Costa GV, Margis R, Margis-Pinheiro M. 2006. Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta. 224(2):300-314 https://doi.org/10.1007/s00425-005-0214-8
  26. Yabuta K, Motoki T, Yoshimura K, Takede T, Ishigawa T, Shigeoka S. 2002. Thylakoid membrane bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J. 32:915-925 https://doi.org/10.1046/j.1365-313X.2002.01476.x
  27. Yoshida K, Shinmyo A. 2000. Transgene expression systems in plants, a natural bioreactor. J Biosci Bioeng 90:353-362 https://doi.org/10.1016/S1389-1723(01)80001-3
  28. Yun DJ. 2005. Molecular mechanism of plant adaptation to high salinity. Korean J. Plant Biotechnol. 32(1):1-14 https://doi.org/10.5010/JPB.2005.32.1.001
  29. Wada, K, Tada T, Nakamura Y, Ishikawa T, Yabuta Y, Yoshimura K, Shigeoka S, and Nishimura K. 2003. Crystal structure of chloroplastic ascorbate peroxidase from tobacco plants and structural insights into its instability. J. Biochem. (Tokyo). 134:239-244 https://doi.org/10.1093/jb/mvg136