Analysis of Genetic Relationship of Pear (Pyrus spp.) Germplasms Using AFLP Markers

AFLP 표지를 이용한 배 유전자원의 유연관계 분석

  • Cho, Kang-Hee (National Institute of Horticultural & Herbal Science, RDA) ;
  • Shin, Il Sheob (National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Hyun Ran (National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Jeong-Hee (National Institute of Horticultural & Herbal Science, RDA) ;
  • Heo, Seong (National Institute of Horticultural & Herbal Science, RDA) ;
  • Yoo, Ki Yeol (National Institute of Horticultural & Herbal Science, RDA)
  • Received : 2009.11.10
  • Published : 20091200

Abstract

Amplified fragment length polymorphism (AFLP) marker was utilized for evaluation of genetic diversity of 60 pear germplasms. Twenty selective AFLP primer pairs generated a total of 522 polymorphic amplification products. From UPGMA (unweighted pair-group method arithmetic average) cluster analysis by using polymorphic bands, the pear germplasms were divided into four clusters by similarity index of 0.691. The first cluster (I) included European pears belonging to Pyrus communis and wild species such as P. nivalis and P. cordata. The second cluster (II) included Ussurian pea pears belonging to P. betulaefolia and P. fauriei. The third cluster (III) included pea pears belonging to P. calleryana and P. koehnei. Most of germplasms belonging to P. pyrifolia and P. ussuriensis, and interspecific hybrids were included in the fourth (IV) cluster. Therefore pear germplasms originated from East Asia were closely related to P. pyrifolia and P. ussuriensis. Similarity values among the tested pear germplasms ranged from 0.584 to 0.879, and the average similarity value was 0.686.

본 연구는 배 유전자원의 유전적 변이를 DNA 수준에서 비교함으로써 육종의 기초 자료로 활용하기 위하여 유전자원 60점을 대상으로 AFLP 분석을 수행하였다. 총 20종의 AFLP 프라이머 조합을 이용하여 522개의 다형성 밴드를 얻었다. 획득된 다형성 밴드를 이용하여 UPGMA 방식으로 유사도 및 집괴분석을 수행한 결과 유전적 유사도 0.691를 기준으로 4개의 그룹으로 분류되었다. 첫 번째 그룹에는 Pyrus communis에 속하는 품종 및 P. nivalis, P. cordata 등이 포함되었다. P. betulaefolia와 P. fauriei에 속하는 콩배 계통들이 두 번째 그룹에 속하였고, P. calleryana와 P. koehnei를 포함한 콩배 계통들이 세 번째 그룹으로 분류되었다. 네 번째 그룹에는 P. pyrifolia와 P. ussuriensis에 속하는 재배품종, 교잡종 및 그 외의 종들이 대부분 속하여 동아시아에서 유래한 유전자원들은 P. pyrifolia나 P. ussuriensis와 서로 밀접히 연관되어 있음을 확인할 수 있었다. 유전자원 간 유전적 유사도는 0.584에서 0.879범위로 평균 유전적 유사도는 0.686이었다.

Keywords

References

  1. Ashok KG, Lewis NL, David MH, Judith NS. 2006. European and Asian pears: simple sequence repeat-polyacrylamide gel electrophoresis-based analysis of commercially important North American cultivars. HortScience 41:304-309
  2. Bao L, Chen K, Zhang D, Cao Y, Yamamoto T, Teng Y, 2007. Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet. Resour. Crop. Evol. 54:959-971 https://doi.org/10.1007/s10722-006-9152-y
  3. Bell RL. 1990. Pears (Pyrus). In: Moore, JN, Ballington JR. (eds), Genetic resources of temperate fruit and nut crops I. International Society for Horticultural Science, Wageningen, Netherlands, pp.665-697
  4. Bell RL. Quamme HA, Layne REC, Skirvin RM. 1996. Pears. In: Janick J, Moore JN (eds), Fruit breeding, Vol Ⅰ: Tree and tropical fruits. John Willey & Sons, London, pp.441-514
  5. Cheong KH. 1994. Taxonomic studies on native and cultivated Pyrus species in Korea. Ph.D. Thesis. Seoul National University. pp.76-79
  6. Chevreau E, Leuliette S, Gallet M. 1997. Inheritance and linkage of isozyme loci in pear (Pyrus communis L.). Theor. Appl. Genet. 94:498-506 https://doi.org/10.1007/s001220050443
  7. Iketani H, Manabe T, Matsuta N, Akihama T, Hayashi T. 1998. Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear (Pyrus spp.). Genet. Resour. Crop Evol. 45:533-539 https://doi.org/10.1023/A:1008646016181
  8. Jang JT, Tanabe K, Tamura F, Banno K. 1991. Identification of Pyrus species by peroxidase isozyme phenotypes of flower bud. J. Jpn. Sco. Hort. Sci. 60:513-519 https://doi.org/10.2503/jjshs.60.513
  9. Jang JT, Tanabe K, Tamura F, Banno K. 1992. Identification of Pyrus species by leaf peroxidase isozyme phenotypes. J. Jpn. Sco. Hort. Sci. 61:273-286 https://doi.org/10.2503/jjshs.61.273
  10. Kajiura I, Nakajima M, Sakai Y, Oogaki C. 1983. A species-specific flavonoid from Pyrus ussuriensis Max. and Pyrus aromatica Nakai et Kikuchi, and its geographical distribution in Japan. Jap. J. Breed, 33(1):1-14
  11. Katayama H, Adachi S, Yamamoto T, Uematsu C. 2007. A wide range of genetic diversity in pear (Pyrus ussuriensis var. aromatica) genetic resources from Iwate, Japan revealed by SSR and chloroplast DNA markers. Genet. Resour. Crop Evol. 54:1573-1585 https://doi.org/10.1007/s10722-006-9170-9
  12. Kim DI. 1998. Taxonomy of Oriental pear (Pyrus spp.) based on multivariate and RAPD analyses. Ph.D. Thesis. Seoul National University. pp.81-82
  13. Kimura T, Shi YZ, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Yamamoto T. 2002. Identification of Asian pear varieties by SSR analysis. Breeding Science 52:115-121 https://doi.org/10.1270/jsbbs.52.115
  14. Monte-Corvo L, Cabrita L, Oliveiria CM, Leitão J. 2000. Assessment of genetic relationship amomg Pyrus species and cultivars using AFLP and RAPD markers. Genet. Resour. Crop Evol. 47:257-265 https://doi.org/10.1023/A:1008794809807
  15. Monte-Corvo L, Goulão L, Oliveira C. 2001. ISSR analysis of cultivars of pear and suitability of molecular markers for clone discrimination. J. Amer. Soc. Hort. Sci. 126:517-522
  16. Oliveira C, Mota M, Mont-Corvo L, Goulão L, Silva DM. 1999. Molecular typing of Pyrus based on RAPD markers. Sci. Hort. 79:163-174 https://doi.org/10.1016/S0304-4238(98)00205-2
  17. Shen T. 1980. Pears of China. HortScience 15:13-17
  18. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407-4414 https://doi.org/10.1093/nar/23.21.4407
  19. Westwood MN. 1968. Comparison of Pyrus fauriei Schneider with P. calleryana Decaisne (Rosaceae). Baileya 16:39-41
  20. Westwood MN, Challice JS. 1978. Morphology and surface topography of pollen and anthers of Pyrus species. J. Amer. Soc. Hort. Sci. 103:28-37
  21. Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Mastsuta N. 2001. SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor. Appl. Genet. 102:865-870 https://doi.org/10.1007/s001220000524
  22. Zhang C, Tanabe K. Wang S, Tamura F, Yosihda A, Matsumoto K. 2006. The impact of cell division and cell enlargement on the evolution of fruit size in Pyrus pyrifolia. Annals of Botany 98:537-543 https://doi.org/10.1093/aob/mcl144