핵연료 안내관용 지르코늄 합금의 강도 및 부식 성능에 미치는 제조공정 영향

Manufacturing Process Effect on Strength and Corrosion Properties of Zr Alloys for Fuel Guide Tube

  • 김현길 (한국원자력연구원 원자력융합기술개발부) ;
  • 김일현 (한국원자력연구원 원자력융합기술개발부) ;
  • 최병권 (한국원자력연구원 원자력융합기술개발부) ;
  • 박상윤 (한국원자력연구원 원자력융합기술개발부) ;
  • 박정용 (한국원자력연구원 원자력융합기술개발부) ;
  • 정용환 (한국원자력연구원 원자력융합기술개발부)
  • Kim, Hyun-Gil (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute) ;
  • Kim, Il-Hyun (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute) ;
  • Choi, Byung-Kwan (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute) ;
  • Park, Sang-Yoon (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute) ;
  • Park, Jeong-Yong (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute) ;
  • Jeong, Yong-Hwan (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute)
  • 투고 : 2009.07.31
  • 발행 : 2009.12.20

초록

The manufacturing process of zirconium alloys is an import factor to increase their strength and corrosion resistance. In order to find an improved manufacturing process of zirconium alloys in both Zr-1Nb-1Sn-0.1Fe (Alloy-A) and Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr (HANA-4) for fuel guide tubes, sheet samples were prepared by applying two- and three-step processes that were controlled by an annealing and reduction condition. The mechanical strength and corrosion resistance of both alloys were increased by applying the twostep process rather than the three-step process. From a matrix analysis using TEM, the property improvement is related to the decrease of the precipitate mean diameter with an application of the two-step process. In a comparison of the strength and corrosion properties between Alloy-A and HANA-4, the performance of HANA-4 was feasible for application to fuel guide tubes.

키워드

과제정보

연구 과제 주관 기관 : 교과부

참고문헌

  1. R. Yang, B. Cheng, J. Deshon, K. Edsinger, and O. Ozer, LWR Fuel Performance Conference, Kyoto, Japan, October(2005)
  2. T. Smith, J. Nucl. Mater. 18, 323 (1966) https://doi.org/10.1016/0022-3115(66)90173-5
  3. M. P. Puls, S. Q. Shi, and J. Rabier, J. Nucl. Mater. 336, 73(2005) https://doi.org/10.1016/j.jnucmat.2004.08.016
  4. S. J. King, R. L. Kesterson, K. H. Yueh, R. J. Comstock, W. M. Herwig, and S. D. Ferguson, 13th International Conference in Zirconium in the Nuclear Industry, Annecy, France, June 10-14, ASTM STP 1423, 471 (2002)
  5. R. B. Adamson, Zirconium in the Nuclear Industry, ASTM STP 633, 326 (1977)
  6. A. M. Garde, Zirconium in the Nuclear Industry, ASTM STP 1023, 548 (1989)
  7. H. G. Kim, B. K. Choi, K. T. Kim, S. D. Kim, C. H. Park, and Y. H. Jeong, J. Kor. Inst. Met. & Mater. 43, 565 (2005)
  8. H. G. Kim, J. Y. Park, and Y. H. Jeong, J. Nucl. Mater. 347, 140 (2005) https://doi.org/10.1016/j.jnucmat.2005.08.008
  9. M. H. Lee, J. S. Koo, Y. H. Jeong, and Y. H. Jung, Kor. J. Mater. Research. 9, 1123 (1999)
  10. Y. I. Jung, M. H. Lee, H. G. Kim, J. Y. Park, and Y. H. Jeong, J. Alloys and Compounds. 479, 423 (2009) https://doi.org/10.1016/j.jallcom.2008.12.089
  11. J. Y. Park, Y. H. Jeong, and Y. H. Jung, Met. Mater. Int. 7, 447 (2001) https://doi.org/10.1007/BF03027086
  12. H. G. Kim, B. K. Choi, H. D. Cho, J. Y. Park, and Y. H. Jeong, J. Kor. Inst. Met. & Mater. 46, 482 (2008)
  13. D. Charquet, R. Hahn, E. Ortlieb, J. P. Gros, and J. F. Wadier, Zirconium in the Nuclear Industry, ASTM STP 1023, 405 (1989)
  14. KNF, 2002-2-222, Development of Manufacturing and Performance Evaluation Technology for Zircomium Alloy Tubes (2009)
  15. J. J. Kearns: Thermal Expansion and Preparred Orientation in Zircaloy, WAPD-TM-472, Westinghouse Electric Corp., Pittsburgh, Pa., (1965)
  16. Y. R. Yu, H. Y. Chang, and Y. S. Kim, Cor. & Sci. Tech. 2, 253(2003)
  17. H. G. Kim, Y. H. Jeong, and T. H. Kim, J. Kor. Inst. Met. & Mater. 41, 424 (2003)
  18. H. G. Kim, B. K. Choi, J. Y. Park, and Y. H. Jeong, Cor. Sci. 51, 2400 (2009) https://doi.org/10.1016/j.corsci.2009.06.023
  19. K. Takeda and H. Anada, Zirconium in the Nuclear Industry, ASTM STP 1354, 592 (2000)