Electrical Characteristics of Isotropic Conductive Adhesives (ICAs) for the Fabrication of RFID Inlays

RFID Inlay 제작용 등방성 도전 접착제의 전기적 특성 평가

  • Lee, Jun-Sik (Advanced Welding & Joining R&D Department/Microjoining Center, KITECH) ;
  • Kim, Jun-Ki (Advanced Welding & Joining R&D Department/Microjoining Center, KITECH) ;
  • Kim, Mok-Soon (School of Materials Science & Engineering, Inha University) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Technology)
  • 이준식 (한국생산기술연구원 용접접합연구부/마이크로조이닝센터) ;
  • 김준기 (한국생산기술연구원 용접접합연구부/마이크로조이닝센터) ;
  • 김목순 (인하대학교 신소재공학부) ;
  • 이종현 (서울산업대학교 신소재공학과)
  • Received : 2009.03.02
  • Published : 2009.07.25

Abstract

Isotropic conductive adhesives (ICAs) have been used or considered as an interconnect material for radio frequency identification (RFID) inlays or other flip chip assemblies due to the advantages of having a low temperature and high-speed bonding. In this work, the curing properties of commercial ICAs for the RFID tag application and the signal transmission in conductive lines that contained the ICA joints were evaluated as a function of the degree of cure at 900 MHz frequency range. The ICAs showed adequate signal transmission only after the curing process passed over the critical time. It was also found that the insertion loss of signal was more dependent on the contact states of Ag fillers in the bondline in preference to the electrical resistance of the ICA itself.

Keywords

Acknowledgement

Supported by : 서울시

References

  1. M. Ward and R. V. Kranenburg, JISC Technology and Standards Watch May, 1 (2006)
  2. J. Banks, M. Pachano, L. Thompson, and D. Hanny, RFID Applied, p.297, John Wiley and Sons, New Jersey, USA (2007)
  3. M. Fairley, RFID Smart Labels, p.19 Tarsus Exhibitions and Publishing Ltd., London, England (2005)
  4. Z. Lai and J. Liu, IEEE T. Compon. Pack. T.(B) 19, 644 (1996) https://doi.org/10.1109/96.533908
  5. M. J. Yim and K. W. Paik, Int. J. Adh. & Adh. 26, 304 (2006) https://doi.org/10.1016/j.ijadhadh.2005.04.004
  6. C.-M. Cheng, V. Buffa, W. O'Hara, B. Xia, and J. Shah, Global SMT and Packaging 5, 17 (2005)
  7. J.-H. Lee, A.-M. Yu, J.-H. Kim, M.-S. Kim, and N. Kang, Met. Mater. Int. 14, 649 (2008) https://doi.org/10.3365/met.mat.2008.10.649
  8. D. Lu, Q. K. Tong, and C. P. Wong, IEEE T. Electron. Pack. 22, 223 (1999) https://doi.org/10.1109/6104.795857
  9. D. Lu and C. P. Wong, Int. J. Adh. & Adh. 20, 189 (2000) https://doi.org/10.1016/S0143-7496(99)00039-1
  10. M. Inoue and K. Suganuma, Solder. Surf. Mt. Tech. 18, 40 (2006) https://doi.org/10.1108/09540910610665125
  11. B.-I. Noh, J.-B. Lee, and S.-B. Jung, J. Microelectronics & Packaging Society 13, 39 (2006)
  12. J. Bauer and M. Bauer, Microsyst. Technol. 8, 58 (2002) https://doi.org/10.1007/s00542-001-0144-8
  13. A. Todd, C. Michael, S. Gregory, G. Adams, M. Bernard, and M. Nagib, Encapsulated Cure Systems, http://www.wipo.int/pctdb/en/wo.jsp?IA=US2005030821& DISPLAY=DESC (2005)
  14. R. Sihlbom and J. Liu, Proc. International Seminar on Conductive Adhesive Joining in Electronics Packaging, p.199, Philips, Eindhoven, Netherlands (1995)
  15. W. S. Kwon and K. W. Paik, J. Appl. Polym. Sci. 93, 2634 (2004) https://doi.org/10.1002/app.20844
  16. J. Liu, Solder. Surf. Mt. Tech. 13, 39 (2001) https://doi.org/10.1108/09540910110407397
  17. Y. Li and C. P. Wong, Met. Sci. Eng. R 51, 1 (2006) https://doi.org/10.1016/j.mser.2006.01.001
  18. M. M. Al-Asadi, A. P. Duffy, A. J. Willis, K. Hodge, and T. M. Benson, Microw. Opt. Techn. Let. 19, 84 (1998) https://doi.org/10.1002/(SICI)1098-2760(19981005)19:2<84::AID-MOP2>3.0.CO;2-B