초음파를 이용한 농산물의 건조특성 분석

Estimation of Agricultural Produce Drying Using Ultrasonic

  • Khmelev, Vladimir N. (Biysk Technological Institute, Altay State Technical University) ;
  • Choo, Kwang-Moon (Dooson co. ltd.)
  • 투고 : 2009.10.28
  • 심사 : 2009.12.18
  • 발행 : 2009.12.31

초록

본 연구는 국내에서 사용되는 건조방법 (열풍, 마이크로웨이브, 진공 등)으로는 물리적 한계에 의해 건조소요에너지, 품질 저하 및 건조속도의 한계 등이 새로운 건조방식의 요구를 만족 시켜주지 못하므로, 비가열 건조를 위해 실험용 초음파 건조기를 개발하였다. 건조조건은 4수준으로 하였으며, No. 1은 초음파 및 열풍 없이 외기, No. 2는 초음파만, No. 3은 열풍만, No. 4는 초음파 및 열풍으로 총 4가지 조건으로 당근 및 인삼 절편을 건조기 내에서 30분간 건조를 하였으며, 전 후의 중량을 측정하여 건조정도를 판단하였다. 초음파 및 열풍으로 건조한 No. 4가 건감율이 가장 높았으며, 당근 절편의 건감율은 22.4% (w.b.)/h 및 인삼 절편은 3.8%(w.b.)/h로 나타났으며, 건조물의 변색 및 절편의 뒤틀림은 거의 열풍만으로 건조한 No. 3과 거의 비슷한 정도로 나타났다.

This study was conducted to develop the ultrasonic dryer because present drying methods (heat convection, microwave, vacuum, etc.) could not improve the drying consumption energy, decrease of quality and drying ratio by physical limitation. The drying tests were conducted with four levels (No. 1 only non-heated air, No. 2 only ultrasonic, No. 3 only heated air and No. 4 ultrasonic with heated air) and measuring weight of samples after drying carrot and ginseng slices for 30 minutes. The result of test is that the drying ratio was highest in the level of No. 4 ultrasonic with heated air. The sliced carrot's drying ratio was 22.4% (w.b.)/h and sliced ginseng's drying ratio was 3.8% (w.b.)/h. The discoloration and twist of samples was appeared on using only heated air like No. 3.

키워드

참고문헌

  1. Choo, K. M., V. N. Khmelev, A. V. Shalunov, H. J. Lee, A. N. Lebedev, and M. V. Khmelev. 2008. Compact ultrasonic dryer for capillary-porous and loose materials. Ninth international workshops and tutorials on electron devices and materials EDM2008. Workshop Proceedings. Novosibirsk. NSTU 295-299.
  2. Fuente-Blanco, S., E. Riera-Franco, V. M. Acosta-Aparicio, A. Blanco-Blanco, and J. A. Gallego- Juarez. 2006. Food drying process by power ultrasound. Ultrasonics. Elsevier USA 44: 523–527. https://doi.org/10.1016/j.ultras.2006.05.181
  3. Gonzalez, A., J. Rodrıguez, I. Garmendia, and J. A. Gallego-Juarez. 2006. Application of high intensity air-borne ultrasound for debubbling liquid coating layers. Ultrasonics. Elsevier USA. 44: 529–532. https://doi.org/10.1016/j.ultras.2006.05.118
  4. Jhang, K. Y., M. S. Kim, H. K. Cho. 1998. An experimental study on the propagation characteristics of ultrasonic wave in watermelon. J. of Biosystems Engineering 23: 615-620.
  5. Ju, E. S., W. J. La, and J. C. Kim. 1996. Use of ultrasonic to atomizing a highly viscous bio-oil. J. of Biosystems Engineering 21: 467-473.
  6. Khmelev, V. N., II. Savin, R. V. Barsukov, S. N. Tsyganok, A. N. Slivin, A. N. Lebedev, S. V. Levin, and M. V. Khmelev. 2005. System of ultrasonic drying on the basis of a piezoelectric contactless radiator. Measurements, automation and modelling in the industry and scientific researches. The Interuniversity collection/under edition G.V. Leonov, AltGTU, BTI.
  7. Khmelev, V. N. and A. V. Shalunov. 2007. Ultrasonic multipurpose and specialised devices for an intensification of technological processes in the industry. Barnaul AltGTU 416.