Antioxidant Activities of Chrysanthemum frutescens, Coreopsis lanceolata, Matricaria recutica and Hieracium pilosella Flower Extracts by Extraction Solvent

추출용매에 따른 마가렛트, 큰금계국, 저먼캐모마일, 알프스민들레 꽃 추출물의 항산화 효과

  • 우정향 (충북대학교 응응생명환경공학부 원예과학과) ;
  • 신소림 (충북대학교 응응생명환경공학부 원예과학과) ;
  • 장영득 (충북대학교 응응생명환경공학부 원예과학과) ;
  • 이철희 (충북대학교 응응생명환경공학부 원예과학과)
  • Received : 2009.07.14
  • Accepted : 2009.09.23
  • Published : 2009.09.30

Abstract

Present studies were conducted to investigate the effects of water and 80% ethanol solvent on antioxidant activities of flower extracts of Chrysanthemum frutescens, Coreopsis lanceolata, Matricaria recutica, and Hieracium pilosella. Extraction yields of water extracts ranged 27.15~40.25% and 80% ethanol extracts 24.92~42.84%, respectively. In all species polyphenol and flavonoid contents were higher with 80% ethanol extraction, especially in C. lanceolata. Same results were obtained with scavenging effects on DPPH and ABTS radicals and ferrous ion chelating effects. Scavenging activity of flower extracts on DPPH radicals was highest in H pilosella - higher than that of synthetic antioxidant DHT. Higher scavenging activity on ABTS radicals was observed with M. recutica. Generally Compositae flower extracts exhibited higher scavenging activity on ABTS radicals than DPPH. Scavenging activity on ABTS radicals of M. recutica and P pilosella were superior to those of ascorbic acid and BHT. Ferrous ion chelating effects were much higher with H. pilosella flower extracts by 80% ethanol. Chelating effects of 4 species were much lower than those of EDTA. In conclusion, to develop natural antioxidant from above 4 Compositae species, 80% ethanol is recommended for efficient solvent to obtain maximum antioxidant isolation and activity.

본 연구는 불과 80% 에탄올 용매가 마가렛트, 큰금계국, 저먼캐모마일 및 알프스민들레 꽃 추출물의 항산화효과에 미치는 영향을 탐색하기 위해서 수행하였다. 추출수율은 물 추출물에서 27.15~40.25%, 80% 에탄올 추출물에서 24.92~42.84%로 나타났다. 총 폴리페놀 및 총 플라보노이드의 함량은 4종 모두 80% 에탄올 추출물에서 많게 나타났으며, 큰금계국 꽃의 80% 에탄올 추출물에서 함량이 가장 많았다. 4종 꽃 추출물의 DPPH radical 소거능, ABTS radical 소거능 및 $Fe^{2+}$ chelating 효과는 모두 80% 에탄올 추출물에서 높았다. DPPH radical 소거능은 알프스민들레 꽃의 80% 에탄올 추출물에서 기장 높았으며, 합성 항산화제인 BHT 보다 소거활성이 높았다. ABTS radical 소거능은 저먼캐모마일 꽃의 80% 에탄올 추출물에서 가장 높았다. 국화과 꽃 추출물은 DPPH radical 보다는 ABTS radical 소거능이 우수하였으며, 저먼캐모마일과 큰금계국 꽃의 80% 에탄올 추출물의 ABTS radical 소거능은 ascorbic acid와 BHT 보다 우수하였다. $Fe^{2+}$ chelating 효과는 알프스민들레 꽃의 80% 에탄올 추출물에서 기장 우수하였다. EDTA와 chelating 효과를 비교한 결과, 4종의 꽃 추출물은 EDTA 보다 chelating 효과가 극히 낮았다. 본 연구의 결과, 마가렛트, 큰금계국, 저먼캐모마일, 알프스민들레 등 국화과 4종의 꽃을 이용하여 천연 항산화제를 개발할 때에는 80% 에탄올을 용매로 추출하는 것이 시료의 항산화 물질 추출 효율 및 항산화 활성을 증가시킬 수 있는 효율적인 방법으로 생각된다.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. Blois, M.S. 1958. Antiox idant determ ination by the use of a stable free radical. Nature 26: 1198-1204.
  2. Blumenthal, M., W.R. Busse, T. Hall, S. Klein, R.S. Ri ster, and VE. Tyler. 1998. The complete german commission & monographs: Therapeuti c guide to herbal medicine, American Botani cal Council, Austin, USA.
  3. Cowan, M.M. 1999. Plant products as antim icrobial agents. Clin. Microbiol. Rev. 12:564-582.
  4. Crespy, V and G Williamson. 2004. A review of the health effects of green tea catec hins in in vivo animal models. J. Nutr. 134:3431-3440. https://doi.org/10.1093/jn/134.12.3431S
  5. Hah, D.S., C.H. Kim, GS. Kim, E.G Kim, and J. S. Kim. 2005. Anti oxidative effects of traditional medicinal plants in lipid peroxidation. Kor. J. Vel. Res. 45:341-350.
  6. Hossain, Z., A.KA Mandai, S.K. Datta, and A.K. Biswas. 2007. Development of NaCI-to lerant line in Chrysanthemum morifolium Ramat. through shoot organogenesis of selected callu line. J. Biotechnol. 129:658-667. https://doi.org/10.1016/j.jbiotec.2007.02.020
  7. Kan, I.H., J.H. Cha, J.H. Han, S.W. Lee, H.J. Kim, S.H. Kwon, I.H. Ham, B.S. Hwang, and W.K . Whang. 2005. Isolation of antiox idant from domestic Crataegus pinnalifida Bunge leaves. Kor. J. Phannacogn. 36: 121-128.
  8. Kim, J.G, YM. Kang, GS. Eom, YM. Go, and T.Y Kim . 2003. Antioxidative activity and antimicrobial activity of extracts from medicinal plants (Akebia quinate Decaisn, Scirusjluvialilis A. Gray, Gardenia jasminoides for. grandiflora Makino). J Agric. Life Sci. 37:69-75.
  9. Kim, M.J., J.S. Choi, E.J. Song, S.Y. Lee, K.B.W.R. Kim, S.J. Lee, S.J . Kim, S.Y. Yoon, Y.J . Jeon, and D.H. Aim. 2009a. Effects of heat and pH treatments on antioxidant properties of fshige okamurai extract. Kor. J. Food Sci. Technol. 41 :50-56.
  10. Kim, Y.E. , J.W. Yang, C.H. Lee, and E.K. Kwon. 2009b. ABTS radical scavenging and anti-tumor effects of Tricholoma matsutake Sing. (p ine mushroom). J. Kor. Soc. Food Sci. Nutr. 38:555-560. https://doi.org/10.3746/jkfn.2009.38.5.555
  11. McCord, J.M. 1987. Oxygen-derived radicals; a link between repercuss ion injury and inflammation. Fed. Proc. 46:2402- 2406.
  12. McKee, T. and J.R. McKee. 2002. Biochemistry. 3th ed. McGraw-Hili, New York, USA.
  13. NFRI. 1990. Manuals of quality characteristic analysis for food quality evaluation (2). National Food Research In stitute, Skuba.
  14. Plaa, GL. and H. Witschi. 1976. Chemicals, drugs, and lipid peroxidation. Ann. Rev. Pharmaco!. Toxicol. 16: 125-131. https://doi.org/10.1146/annurev.pa.16.040176.001013
  15. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antiox idant activity applying an improved ABTS radical cation decolorization assay. Free Rad. BioI. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  16. Shin, J.H., S.J. Lee, J.K. Seo, E.W. Cheon, and N.J. Sung. 2008. Antiox idant acti vity of hot-water extract from Yuza (Citrus junos Sieb ex Tanaka) Peel. J. Life Sci. 18: 1745-1751. https://doi.org/10.5352/JLS.2008.18.12.1745
  17. Velioglu, Y.S. , G Mazza, L. Cao, and B.D. Oomah. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46:4113-4117. https://doi.org/10.1021/jf9801973
  18. Woo, W.S. 1995. Phenolic compound. In Natural product chemistry method. 2nd ed. Seoul National University, Seoul, Korea.
  19. Yen, G.C., P.D. Duhb, and H.L. Tsaia. 2002. Antioxidant and pro-oxidant properties of ascorbic acid and garlic acid. Food Chem. 79:307-313. https://doi.org/10.1016/S0308-8146(02)00145-0