Anti-inflammatory Effect of Dangyuja (Citrus grandis Osbeck) Leaves in LPS-stimulated RAW 264.7 Cells

  • Yang, Eun-Jin (Department of Pharmacology, College of Medicine, Jeju National University) ;
  • Lee, Hye-Ja (Department of Pharmacology, College of Medicine, Jeju National University) ;
  • Kang, Gyeoung-Jin (Department of Pharmacology, College of Medicine, Jeju National University) ;
  • Park, Sun-Soon (Department of Pharmacology, College of Medicine, Jeju National University) ;
  • Yoon, Weon-Jong (Department of Pharmacology, College of Medicine, Jeju National University) ;
  • Kang, Hee-Kyoung (Department of Pharmacology, College of Medicine, Jeju National University) ;
  • Cho, So-Mi Kim (Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University) ;
  • Yoo, Eun-Sook (Department of Pharmacology, College of Medicine, Jeju National University)
  • 발행 : 2009.10.31

초록

Dangyuja (Citrus grandis Osbeck) is a native plant growing only on Jeju Island in Korea. In this study, antiinflammatory effect of dangyuja leaves on a murine macrophage cell line was investigated. RAW 264.7 murine macrophage cells were stimulated with lipopolysaccharide (LPS, $1{\mu}g/mL$) to induce expression of pro-inflammatory markers [interleukin (IL)-6 and inducible nitric oxide synthase (iNOS)]. The crude extract (80% MeOH Ex.) and solvent fractions (hexane, $CHCl_3$, EtOAc, BuOH, and $H_2O$ Ex.) were obtained from dangyuja leaves. The $CHCl_3$ fraction inhibited the nitric oxide (NO) and IL-6 production in a dose-dependent manner. Also, the $CHCl_3$ fraction inhibited mRNA expression and protein levels of iNOS in a dose-dependent manner. Furthermore, the $CHCl_3$ fraction inhibited LPS-induced nuclear factor (NF)-${\kappa}B$ activation and phosphorylation of mitogen-activated protein kinases (MAPKs: ERK, JNK, and p38). These results suggest that dangyuja leaves may inhibit LPS-induced production of inflammatory markers by blocking NF-${\kappa}B$ and MAPKs signaling in RAW 264.7 cells.

키워드

참고문헌

  1. Tian Q, Miller EG, Ahmad H, Tang L, Patil BS. Differential inhibition of human cancer cell proliferation by Citrus limonoids. Nutr. Cancer 40: 180-184 (2001) https://doi.org/10.1207/S15327914NC402_15
  2. Lee HJ, Kang GY, Yoon WJ, Kang HK, Kim YS, Kim SM, Yoo ES. Anti-inflammatory effect of unripe fruit of Citrus grandis Osbeck in RAW 264.7 and HaCaT cells. Korean J. Pharmacogn. 37: 74-80 (2006)
  3. Lim HK, Yoo ES, Moon JY, Jeon YJ, Kim SM, Cho SK. Antioxidant activity of extracts from dangyuja (Citrus grandis Osbeck) fruits produced in Jeju Island. Food Sci. Biotechnol. 15: 312-316 (2006)
  4. Kim YJ, Cho MJ, Kim SM, Cho SK. In vitro antioxidant and cytoprotective activities of the extract of dangyuja (Citrus grandis Osbeck) leaves. Food Sci Biotecnol. 17: 1086-1091 (2008)
  5. Olszanecki R, Gebska A, Kozlovski VI, Gryglewski RJ. Flavonoids and nitric oxide synthase. J. Physiol. Phamacol. 53: 571-584 (2002)
  6. Choi CY, Park KR, Lee JH, Jeon YJ, Liu KH, Oh S, Kim DE, Yea SS. Isoeugenol suppression of inducible nitric oxide synthase expression is mediated by down-regulation of NF-${\kappa}B$, ERK 1/2, and p38 kinase. Eur. J. Pharmacol. 576: 151-159 (2007) https://doi.org/10.1016/j.ejphar.2007.07.034
  7. Moeslinger T, Friedl R, Spieckermann PG. Inhibition of inducible nitric oxide synthesis by azathioprine in a macrophage cell line. Life Sci. 79: 374-381 (2006) https://doi.org/10.1016/j.lfs.2006.01.015
  8. Huang GC, Chow JM, Shen SC, Yang LY, Lin CW, Chen YC. Wogonin but not nor-wogonin inhibits lipopolysaccharide and lipoteichoic acid-induced iNOS gene expression and NO production in macrophage. Int. Immunopharmacol. 7: 1054-1063 (2007) https://doi.org/10.1016/j.intimp.2007.04.001
  9. Son CG, Shin JW, Cho JH,Cho CK, Yun CH, Chung W, Han SH. Macrophage activation and nitric oxide production by water soluble components of Hericum erinaceum. Int. Immunopharmacol. 6: 1363-1369 (2006) https://doi.org/10.1016/j.intimp.2006.03.005
  10. Pokharel YR, Liu QH, Woo ER, Kang KW. 4-Hydrosykobusin inhibits the induction of nitric oxide synthase by inhibiting NF-$\kappa{B}$ and AP-1 activation. Biol. Pharm. Bull. 30: 1097-1101 (2007) https://doi.org/10.1248/bpb.30.1097
  11. Kim JH, Kim DH, Baek SH, Lee HJ, Kim MR, Kwon HJ, Lee CH. Rengyolone inhibits inducible nitric oxide synthase expression and nitric oxide production by down-regulation of NF-$\kappa{B}$ and p38 MAP kinase activity in LPS-stimulated RAW 264.7 cells. Biochem. Phamacol. 71: 1198-1205 (2006) https://doi.org/10.1016/j.bcp.2005.12.031
  12. Oka Y, Ibuki T, Matsumura K, Namba M, Yamazaki Y, Poole S, Tanaka Y, Kobayashi S. Interleukin-6 is a candidate molecule that transmits inflammatory information to the CNS. Neuroscience 145: 530-538 (2007) https://doi.org/10.1016/j.neuroscience.2006.10.055
  13. Lappas M, Permezel M, Rice GE. Mitogen-activated protein kinase proteins regulates LPS-stimulated release of pro-inflammatory cytokines and prostaglandins from human gestational tissues. Placenta 28: 936-945 (2007) https://doi.org/10.1016/j.placenta.2007.02.009
  14. Weiss J. Hutzler M, Kao L. Environmental modulation of lipopolysaccharide chain length alters the sensitivity Escherichia coli to the neutrophil bactericidal/permeability-increasing protein. Infect. Immun. 51: 594-599 (1986)
  15. Kwak HJ, Song JS, Heo JY, Yang SD, Nam JY, Cheon HG. Roflumilast inhibits lipopolysaccharide-induced inflammatory mediators via suppression of nuclear factor-${\kappa}B$, p38 mitogen activated protein kinase, and c-Jun $NH_2$-terminal kinase. J. Pharmacol. Exp. Ther. 315: 1188-1195 (2005) https://doi.org/10.1124/jpet.105.092056
  16. Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M, Santoro MG. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature 403: 103-108 (2000) https://doi.org/10.1038/47520
  17. Jeon KI, Jeong JY, Jue DM. Thiol-reactive metal compounds inhibit NF-kappaB activation by blocking I kappa B kinase. J. Immunol. 164: 5981-5989 (2000)
  18. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell. Signal. 13: 85-94 (2001) https://doi.org/10.1016/S0898-6568(00)00149-2
  19. Pan MH, Lai CS, Wang YJ, Ho CT. Acacetin suppressed LPSinduced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem. Pharmacol. 72: 1293-1303 (2006) https://doi.org/10.1016/j.bcp.2006.07.039
  20. Irie T, Muta T, Takeshige K. TAK1 mediates an activation signal from toll-like receptor(s) to nuclear factor-kappaB in lipopolysaccharidestimulated macrophages. FEBS Lett. 467: 160-164 (2000) https://doi.org/10.1016/S0014-5793(00)01146-7
  21. Rao KM. MAP kinase activation in macrophage. J. Leukocyte Biol. 69: 3-10 (2001)
  22. Schorey JS, Cooper AM. Macrophage signaling upon mycobacterial infection: The MAP kinase lead the way. Cell. Microbiol. 2: 133- 142 (2003)
  23. Jung CH, Kim JH, Hong MH, Seog HM, Oh SH, Lee PJ, Kim GJ, Kim HM, Um JY, Ko SG. Phenolic-rich fraction from Rhus verniciflua strokes (RVS) suppress inflammatory response via NF- ${\kappa}B$ and JNK pathway in lipopolysaccharide induced RAW 264.7 macrophages. J. Ethnopharmacol. 110: 490-497 (2007) https://doi.org/10.1016/j.jep.2006.10.013
  24. Lee SJ, Lim KT. Phytoglycoprotein inhibits interleukin-1beta and interleukin-6 via p38 mitogen-activated protein kinase in lipopolysaccharide-stimulated RAW 264.7 cells. N-S Arch. Pharmacol. 377: 45-54 (2008) https://doi.org/10.1007/s00210-007-0253-8
  25. Gerlier D, Thomasser N. Use of MTT colorimetricassay to measure cell activation. J. Immunol. Methods 94: 57-63 (1986) https://doi.org/10.1016/0022-1759(86)90215-2
  26. Liu Y. Understanding the biological activity of amyloid proteins in vitro: From inhibited cellular MTT reduction to altered cellular cholesterol homeostasis. Prog. Neuro.-Psychoph. 23: 377-395 (1999) https://doi.org/10.1016/S0278-5846(99)00003-2
  27. Snell JC, Colton CA, Chernvshev ON, Gilgert DL. Locationdependent artifact for no measurement using multiwell plates. Free Radical Bio. Med. 20: 361-363 (1996) https://doi.org/10.1016/0891-5849(96)02083-7
  28. Woo ER, Lee JY, Cho IJ, Kim SG, Kang KW. Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NFkappaB activation in macrophage. Pharmacol. Res. 51: 539-546 (2005) https://doi.org/10.1016/j.phrs.2005.02.002
  29. Cho JY, Baik KU, Jung JH, Park MH. In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur. J. Pharmacol. 398: 399-407 (2000) https://doi.org/10.1016/S0014-2999(00)00337-X
  30. Lane TE, Otero GC, Wu-Heish BA, Howard DH. Expression of inducible nitric oxide synthase by stimulated macrophage correlates with their antihistoplasma activity. Infect. Immun. 62: 1478-1479 (1994)
  31. Ghazizadeh M. Essential role of IL-6 signaling pathway in keloid pathogenesis. J. Nippon Med. Sch. 74: 11-22 (2007) https://doi.org/10.1272/jnms.74.11
  32. Daikonya A, Katsuki S, Kitanaka S. Antiallergic agents from natural sources 9. Inhibition of nitric oxide production by novel chalcone derivatives from Mallotus philippinensis (Euphorbiaceae). Chem. Pharm. Bull. 52: 1326-1329 (2004) https://doi.org/10.1248/cpb.52.1326
  33. Kim JY, Park SJ, Yun KJ, Cho YW, Park HJ, Lee KT. Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-kappaB in RAW 264.7 macrophage. Eur. J. Pharmacol. 584: 175-184 (2008) https://doi.org/10.1016/j.ejphar.2008.01.032
  34. Kim JB, Han AR, Park EY, Kim JY, Cho W, Lee J, Seo EK, Lee KT. Inhibition of LPS-induced iNOS, COX-2, and cytokines expression by poncrin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull. 30: 2345-2351 (2007) https://doi.org/10.1248/bpb.30.2345
  35. De Filippis D, Iuvone T, Esposito G, Steardo L, Arnole GH, Paul AP, De Man Joris G, De Winter Bebedicate Y. Melatonin reverse lipopolysaccharide-induced gastro-intestinal motility disturbances through the inhibition of oxidative stress. J. Pineal Res. 44: 45-41 (2008)
  36. Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulveitch RJ, Davis RJ. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on trypsin and threonine. J. Biol. Chem. 270: 7420- 7426 (1995) https://doi.org/10.1074/jbc.270.13.7420
  37. Rawadi G, Ramez V, Lemercier B, Roman-Roman S. Activation of Mitogen-activated protein kinase pathways by Mycoplasma fermentans membrane lipoproteins in murine macrophages: Involvement in cytokine synthesis. J. Immunol. 160: 1330-1339 (1998)
  38. Ishiwa J, Sato T, Mimaki Y, Sashida Y, Yani M, Ito A. A citrus flavonoid, nobiletin, suppresses production, and gene expression of matrix metalloproteinase 9/gelatinase B in rabbit synovial fibroblast. J. Rheumatol. 27: 20-25 (2000)
  39. Murakami A, Nakamura Y, Torikai Y, Tanaka T, Koshiba T, Koshimizu H, Kuwahara S, Takahashi Y, Ogawa K, Yano M, Tokuda H, Nishino H, Mimaki Y, Sashida Y, Kitanaka S, Ohigashi H. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res. 60: 5059-5066 (2000)