Transient features of natural convection in nanofluid

나노유체 자연대류의 과도 특성

  • Chang, Byong-Hoon (Department of Computer Aided Mechanical Design, Incheon City College)
  • 장병훈 (시립인천전문대학 컴퓨터응용기계설계과)
  • Published : 2009.02.28

Abstract

This paper reports the experimental study of natural convection heat transfer with $Al_2O_3$-water nanofluid. Experimental apparatus was a cylindrical enclosure with adjustable fluid layer thickness, and the aspect ratio was varied between 10.9 and 30.4. Heat transfer coefficients seemed to have reached a steady value within 30 minutes as the case with pure water. But, decrease in heat transfer coefficient continued for over $1{\sim}2$ hours for inclination angle of $0^{\circ}$, and oscillation in heat transfer was observed for certain inclination angles and aspect ratios for over 10 hours. Oscillation shape and period depended on the aspect ratio and inclination angle. For example, the oscillation period for $0^{\circ}$ was more than twice that for $60^{\circ}$. The maximum Nusselt number occurred at the inclination angle of $30^{\circ}$, and the minimum occurred at $60^{\circ}$ for Rayleigh number less than 1.E5. However the present results were obtained with aggregated nanofluid and would be devoid of generalities.

본 논문에서는 알루미나-물 나노유체를 사용하여 자연대류 실험을 수행하였다. 시험공간은 실린더이며 유체층 두께를 조절하여 종횡비는 10.9부터 30.4까지 변화를 주었다. 열전달계수는 순 물의 자연대류 실험과 비슷하게 30분 이내에 정상상태에 거의 도달한 것같이 보이나 경사도가 $0^{\circ}$인 경우 열전달계수가 $1{\sim}2$시간이상 감소하며 일부 종횡비에서는 열전달계수의 변동현상이 10시간이상 측정되었다. 변동형태와 주기는 종횡비와 각도에 따라 다르며 $0^{\circ}$의 경사도에서는 열전달계수의 변동주기가 $60^{\circ}$의 경사도에 비하여 2배 이상 이였다. Rayleigh 수가 $1.0{\times}10^5$ 보다 작은 경우, 평균 Nusselt 수는 $30^{\circ}$의 경사도에서 가장 높게 나타나며 $60^{\circ}$의 경사도에서 가장 낮게 나타났다. 그러나 본 실험결과도 응집된 상태의 나노유체가 사용되었으므로 일반성을 가지고 있지는 않는다.

Keywords

References

  1. Keblinski, P., Phillpot, S.R., Choi, S.U.S., Eastman, J.A.: "Mechanics of heat flow in suspensions of nano-sized particles (nanofluids)", Int. J. Heat Mass Transfer, vol. 45, 855-863, (2002) https://doi.org/10.1016/S0017-9310(01)00175-2
  2. Fan, X., Chen, H., Ding, Y., Plucinski, P.K., Lapkin, A.A.: "Potential of ‘nanofluids’ to further intensify microreactors", Green Chemistry, vol. 10, 670-677, (2008) https://doi.org/10.1039/b717943j
  3. You, S.M. and Kim, J.H., Kim, K.H.: "Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer", Applied Physics Letters, vol. 83, 3374-3376, (2003) https://doi.org/10.1063/1.1619206
  4. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thomson, L.J.: "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles", Applied Physics Letters, vol. 78, no. 6, 718-720, (2001) https://doi.org/10.1063/1.1341218
  5. Choi, S.U.S., Zhang, Z.G., Yu, Wu, Lockwood, Grulke, E.A.: "Anomalous thermal conductivity enhancement in nanotube suspensions", Applied Physics Letters, vol. 79, no. 14, 2252-2254, (2001) https://doi.org/10.1063/1.1408272
  6. Bahrami, M., Yovanovich, M.M., Culham, J.R.: "Assessment of relevant physical phenomena controlling thermal performance of nanofluids", J. Thermophysics Heat Transfer, vol. 21, no. 4, 673-679, (2007) https://doi.org/10.2514/1.28058
  7. Li, C.H., Peterson, G.P.: "Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions(nanofluids)", Int. J. Heat Mass Transfer, vol. 50, 4668-4677, (2007) https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.015
  8. Prasher, R., Bhattacharya, P., Phelan, P.E.: "Brownianmotion- based convective-conductive model for the effective thermal conductivity of nanofluids", J. Heat Transfer, vol. 128, 588-595, (2006) https://doi.org/10.1115/1.2188509
  9. Prasher, R.: "Thermal transport due to phonons in ran dom nano-particulate medea in the multiple and dependent (correlated) elastic scattering regime", J. Heat Transfer, vol. 128, 627-637, (2006) https://doi.org/10.1115/1.2194036
  10. Evans, W., Fish, J., Keblinski, P.: "Role of Brownian motion hydrodynamics on nanofluid thermal conductivity", Applied Physics Letters, vol. 88, 093116, (2006) https://doi.org/10.1063/1.2179118
  11. Hong, K.S., Hong, T.K., Yang, H.S.: "Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles", Applied Physics Letters, vol. 88, 031901, (2006) https://doi.org/10.1063/1.2166199
  12. Jang, S.P., Choi, S.U.S.: "Effects of various parameters on nanofluid thermal conductivity, J. Heat Transfer", vol. 129, 617-623, (2007) https://doi.org/10.1115/1.2712475
  13. Keblinski, P., Eastman, J.A., Cahill, D.G., "Nanofluids for thermal transport", Materialstoday, June, 36-44, (2005)
  14. Vadasz, J.J., Govender, S., Vadasz, P.: 'Heat transfer enhancement in nano-fluids suspensions: possible mechanisms and explanations', Int. J. Heat Mass Transfer, vol. 48, 2673-2683, (2005) https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.023
  15. Putra, N., Roetzel, W., Das, S.K.: "Natural convection of nano-fluids, Heat Mass Transfer", vol. 39, 775-784, (2003) https://doi.org/10.1007/s00231-002-0382-z
  16. Wen, D., Ding, Y.: "Formulation of nanofluids for natural convective heat transfer applications", Int. J. Heat Fluid Flow, vol. 26, 855-864, (2005) https://doi.org/10.1016/j.ijheatfluidflow.2005.10.005
  17. Wen, D., Ding, Y.: "Natural convective heat transfer of suspensions of Titanium Dioxide nanoparticles (nanofluids)", IEEE Transactions on Nanotechnology, vol. 5, no. 3, 220-227, (2006) https://doi.org/10.1109/TNANO.2006.874045
  18. Nnanna, A.G.A.: "Experimental model of temperature-driven nanofluid", J. Heat Transfer, vol. 129, 697-704, (2007) https://doi.org/10.1115/1.2717239
  19. Chang, B.H., Mills, A.F.: Hernandez, E.: "Natural convection of microparticle suspension in thin enclosures", Int. J. Heat Mass Transfer, vol. 51, 1332-1341, (2008) https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.030
  20. Okada, M., Suzuki, K.: "Natural convection of waterfine particle suspension in a rectangular cell", Int. J. Heat Mass Transfer, vol. 40, 3201-3208, (1997) https://doi.org/10.1016/S0017-9310(96)00365-1
  21. Chang, B.H., Mills, A.F.: "Natural convection heat transfer in cylindrical enclosures", The 6th ASMEJSME Thermal Engineering Joint Conference TEDAJ03-526, March 16-21, Hawaii, USA., (2003)
  22. Rossby, H.T.: "A study of Bernard convection with and without rotation", J. Fluid Mechanics, vol. 36, 309-336, (1969) https://doi.org/10.1017/S0022112069001674
  23. Hollands, K.G.T., Raithby, G.D., and Konicek, L.: "Correlation equations for free convection heat transfer in horizontal layers of air and water", Int. J. Heat Mass Transfer, vol. 18, 879-884, (1975) https://doi.org/10.1016/0017-9310(75)90179-9
  24. Zhang, X., Gu, H., Fujii, M.: "Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles", Experimental Thermal Fluid Science, vol. 31, 593-599, (2007) https://doi.org/10.1016/j.expthermflusci.2006.06.009
  25. Das, S.K., Putra, N., Thiesen, Peter, Roetzel, W.: "Thermal dependence of thermal conductivity enhancement for nanofluids", J. Heat Transfer, vol. 125, 567-574,(2003) https://doi.org/10.1115/1.1571080
  26. Chon, C.H. and Kihm, Kenneth D.: "Empirical correlation finding the role of temperature and particle size for nanofluid($Al_2O_3$) thermal conductivity enhancement", Applied Physics Letters, vol. 87, 153107, (2005) https://doi.org/10.1063/1.2093936
  27. Lee, S., Choi, S.U.S., Li, S., Eastman, J.A.: "Measuring thermal conductivity of fluids containing Oxide Nanoparticles", J. Heat Transfer, vol. 121, 280-289, (1999) https://doi.org/10.1115/1.2825978
  28. Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., Wu, Q.: "Thermal conductivity enhancement of suspensions containing nanosized alumina particles", J. Applied Physics, vol. 91, no.7, 4568-4572, (2002) https://doi.org/10.1063/1.1454184
  29. Lee, D., Kim, J.W., Kim, B.G.: "A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension", J. Physical Chemistry B, vol. 110, no. 9, 4323-4328, (2006) https://doi.org/10.1021/jp057225m
  30. Prasher, R, Phelan, P.E., Bhattacharya, P.: "Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid)", Nano Letters, vol. 6, no. 7, 1529-1534, (2006) https://doi.org/10.1021/nl060992s
  31. Putnam, S., Cahill, D.G., Braun, P.V., Ge, Z., Shimmin, R.G.: "Thermal conductivity of nanoparticle suspensions", J. Applied Physics, vol. 99, 084308, (2006) https://doi.org/10.1063/1.2189933
  32. Gandhi, K.S.: "Thermal properties of nanofluids: controversy in the making?", Current Science, vol. 92, no. 6, 717-718, (2007)
  33. Prasher, R., Song, D., Wang, J., Phelan, P.: "Measurements of nanofluid viscosity and its implications for thermal applications", Applied Physics Letters, vol. 89, 133108, (2006)
  34. Pak, B.C., Cho, Y.I.: "Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles", Experimental Heat Transfer, vol. 11, 151-170, (1998) https://doi.org/10.1080/08916159808946559
  35. Chen, B., Mikani, F., Nishikawa, N.: "Experimental studies on transient features of natural convection in particles suspensions", Int. J. Heat Mass Transfer, vol.48, 2933-2942, (2005) https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.016
  36. Yang, H.Q., Yang, K.T.: "Laminar natural convection flow transitions in tilted three-dimensional longitudinal rectangular enclosures", Int. J. Heat Mass Transfer, vol. 30, no.8, 1637-1644, (1987) https://doi.org/10.1016/0017-9310(87)90309-7
  37. ElSherbiny, S.M., Raithby, G.D., Hollands, K.G.T.: "Heat transfer by natural convection across vertical and inclined air layers", J. Heat Transfer, vol. 104, 96-102,(1982) https://doi.org/10.1115/1.3245075