• Title/Summary/Keyword: 유효 열전달율

Search Result 2, Processing Time 0.015 seconds

Transient features of natural convection in nanofluid (나노유체 자연대류의 과도 특성)

  • Chang, Byong-Hoon
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This paper reports the experimental study of natural convection heat transfer with $Al_2O_3$-water nanofluid. Experimental apparatus was a cylindrical enclosure with adjustable fluid layer thickness, and the aspect ratio was varied between 10.9 and 30.4. Heat transfer coefficients seemed to have reached a steady value within 30 minutes as the case with pure water. But, decrease in heat transfer coefficient continued for over $1{\sim}2$ hours for inclination angle of $0^{\circ}$, and oscillation in heat transfer was observed for certain inclination angles and aspect ratios for over 10 hours. Oscillation shape and period depended on the aspect ratio and inclination angle. For example, the oscillation period for $0^{\circ}$ was more than twice that for $60^{\circ}$. The maximum Nusselt number occurred at the inclination angle of $30^{\circ}$, and the minimum occurred at $60^{\circ}$ for Rayleigh number less than 1.E5. However the present results were obtained with aggregated nanofluid and would be devoid of generalities.

Modeling on the Condensation of a Stable Steam Jet Discharging into a Quenching Tank (응축탱크로 방출되는 안정된 증기제트 응축모델)

  • 김환열;하광순;배윤영;박종균;최상민
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.349-356
    • /
    • 2001
  • Phenomenon of direct contact condensation (DCC) heat transfer between steam and water is characterized by the transport of heat and mass through a moving steam/water interface. Since the DCC heat transfer provides some advantageous features in the viewpoint of enhanced heat transfer, it is widely applied to the diversified industries. This study proposes a simple condensation model on the stable steam jets discharging into a quenching tank with subcooled water from a single horizontal pipe for the prediction of the steam jet shapes. The model was derived from the mass, momentum and energy equations as well as thermal balance equation with condensing characteristics at the steam/water interface for the axi-symmetric coordinates. The extremely large heat transfer rate at the steam/water interface was reflected in the effective thermal conductivity estimated from the previous experimental results. The results were compared with the experimental ones. The predicted steam jet shape(i. e. radius and length) by the model was increasing as the steam mass flux and the pool temperature were increasing, which was similar to the trend observed in the experiment.

  • PDF