간질 분류를 위한 NEWFM 기반의 특징입력 및 퍼지규칙 추출

Extracting Input Features and Fuzzy Rules for Classifying Epilepsy Based on NEWFM

  • 이상홍 (경원대학교 전자계산학과) ;
  • 임준식 (경원대학교 소프트웨어학부)
  • 발행 : 2009.10.30

초록

본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions, NEWFM)을 이용하여 간질 증세를 가진 사람과 건강한 사람의 뇌파(electroencephalogram, EEG)로부터 정상 파형과 간질(epilepsy) 파형을 분류하는 방안을 제시하고 있다. NEWFM에서 사용할 특징입력을 추출하기 위해서 첫 번째 단계에서는 웨이블릿 변환(wavelet transform, WT)을 이용하였다. 두 번째 단계에서는 첫 번째 단계에서 생성한 웨이블릿 계수들을 주파수 분포와 주파수 변동량을 이용하여 24개의 특징입력을 추출하였다. NEWFM은 이들 24개의 특징입력을 이용하여 정상 파형과 간질 파형을 분류하였을 때 98%의 분류성능을 나타내었다.

This paper presents an approach to classify normal and epilepsy from electroencephalogram(EEG) using a neural network with weighted fuzzy membership functions(NEWFM). To extract input features used in NEWFM, wavelet transform is used in the first step. In the second step, the frequency distribution of signal and the amount of changes in frequency distribution are used for extracting twenty-four numbers of input features from coefficients and approximations produced by wavelet transform in the previous step. NEWFM classifies normal and epilepsy using twenty four numbers of input features, and then the accuracy rate is 98%.

키워드

참고문헌

  1. Shang-Ming Zhou, John Q. Gan, Francisco Sepulveda, “Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface”, Information Sciences, vol.178, Issue 6, pp.1629–1640, 2008. https://doi.org/10.1016/j.ins.2007.11.012
  2. M. Kemal Kiymik, Mehmet Akin, Abdulhamit Subasi, “Automatic recognition of alertness level by using wavelet transform and artificial neural network”, Journal of Neuroscience Methods, vol.139, Issue 2, pp.231–240, 2004. https://doi.org/10.1016/j.jneumeth.2004.04.027
  3. Klaus-Robert Müller, Michael Tangermann, Guido Dornhege, Matthias Krauledat, Gabriel Curio, Benjamin Blankertz, “Machine learning for real-time single-trial EEG-analysis: From brain–computer interfacing to mental state monitoring”, Journal of Neuroscience Methods, vol.167, Issue 1, pp.82–90, 2008. https://doi.org/10.1016/j.jneumeth.2007.09.022
  4. Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., and Elger, C. E., “ Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state”, Physical Review E, 64, 061907, 2001. https://doi.org/10.1103/PhysRevE.64.061907
  5. J. S. Lim, D. Wang, Y.-S. Kim, and S. Gupta, “A neuro-fuzzy approach for diagnosis of antibody deficiency syndrome”, Neurocomputing, vol.69, Issues 7-9, pp.969-974, 2006. https://doi.org/10.1016/j.neucom.2005.06.009
  6. J. S. Lim, T-W Ryu, H-J Kim, and S. Gupta, “Feature Selection for Specific Antibody Deficiency Syndrome by Neural Network with Weighted Fuzzy Membership Functions”, LNCS 3614, pp.811-820, Springer-Verlag, 2005.
  7. Abdulhamit Subasi, “EEG signal classification using wavelet feature extraction and a mixture of expert model”, Expert Systems with Applications, vol.32, Issue 4, pp.1084–1093, 2007. https://doi.org/10.1016/j.eswa.2006.02.005
  8. Adeli, H., Zhou, Z., & Dadmehr, N., “Analysis of EEG records in an epileptic patient using wavelet transform”, Journal of Neuroscience Methods, vol.123, Issue 1, pp.69–87, 2003. https://doi.org/10.1016/S0165-0270(02)00340-0
  9. Kemal Polat and Salih Güneş, “Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals”, Expert Systems with Applications, vol.34, Issue 3, pp.2039–2048, 2008 https://doi.org/10.1016/j.eswa.2007.02.009
  10. Srinivasan V, Eswaran C, Sriraam N, H., “Approximate Entropy based Epileptic EEG detection using Artificial Neural Networks”, IEEE Transactions on Information Technology in Biomedicine, vol.11, Issue 3, pp.288-295, 2007. https://doi.org/10.1109/TITB.2006.884369
  11. Abdulhamit Subasi, “Automatic detection of epileptic seizure using dynamic fuzzy neural networks”, Expert Systems with Applications, vol.31, Issue 2, pp.320–328, 2006 https://doi.org/10.1016/j.eswa.2005.09.027
  12. Joon S. Lim, “Finding Features for Real-Time Premature Ventricular Contraction Detection Using a Fuzzy Neural Network System”, IEEE TRANSACTIONS ON NEURAL NETWORKS, vol.20, Issue 3, pp.522-527, 2009. https://doi.org/10.1109/TNN.2008.2012031
  13. J. S. Lim, “Finding Fuzzy Rules by Neural Network with Weighted Fuzzy Membership Function”, International Journal of Fuzzy Logic and Intelligent Systems, vol.4, No.2, pp.211-216, 2004. https://doi.org/10.5391/IJFIS.2004.4.2.211
  14. 이상홍, 임준식. “KOSPI 예측을 위한 NEWFM 기반의 특징입력 및 퍼지규칙 추출”, 한국인터넷정보학회논문지, vol.9, No.1, pp.129-135, 2008.