References
- Beguin, P. 1999. Hybrid enzymes. Curr. Opin. Biotechnol. 10:336-340 https://doi.org/10.1016/S0958-1669(99)80061-5
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Chen, C. T., C. J. Huang, Y. H. Wang, and C. Y. Chen. 2004. Two-step purification of Bacillus circulans chitinase A1 expressed in Escherichia coli periplasm. Protein Expr. Purif. 37:27-31 https://doi.org/10.1016/j.pep.2004.03.017
-
Garc
$\acute{i}$ a, I., Jos$\acute{e}$ . M. Lora, Jes$\acute{u}$ s. De la Cruz, Tah$\acute{i}$ a Ben$\acute{i}$ tez, A. Llobell, and Jos$\acute{e}$ . A. Pintor-Toro. 1994. Cloning and characterization of a chitinase (CHIT42) cDNA from the mycoparasitic fungus Trichoderma harzianum. Curr. Genet. 27: 83-89 https://doi.org/10.1007/BF00326583 - Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580 https://doi.org/10.1016/S0022-2836(83)80284-8
- Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280:309-316
- Henrissat, B. and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781-788
- Huang, C. J. and C. Y. Chen. 2005. High-level expression and characterization of two chitinases, ChiCH and ChiCW, of Bacillus cereus 28-9 in Escherichia coli. Biochem. Biophys. Res. Commun. 327: 8-17 https://doi.org/10.1016/j.bbrc.2004.11.140
- Huang, C. J., T. K. Wang, S. C. Chung, and C. Y. Chen. 2005. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J. Biochem. Mol. Biol. 38: 82-88 https://doi.org/10.5483/BMBRep.2005.38.1.082
- Huang, C. J. and C. Y. Chen. 2006 Functions of the C-terminal region of chitinase ChiCW from Bacillus cereus 28-9 in substrate-binding and hydrolysis of chitin. J. Microbiol. Biotechnol. 16: 1897-1903
- Imoto, T. and K. Yogishita. 1971. A simple activity measurement of lysozyme. Agric. Biol. Chem. 35: 1154-1156 https://doi.org/10.1271/bbb1961.35.1154
- Itoh, Y., T. Kawase, N. Nikaidou, H. Fukada, M. Mitsutomi, T. Watanabe, and Y. Itoh. 2002. Functional analysis of the chitinbinding domain of a family 19 chitinase from Streptomyces griseus HUT6037: Substrate-binding affinity and cis-dominant increase of antifungal function. Biosci. Biotechnol. Biochem. 66:1084-1092 https://doi.org/10.1271/bbb.66.1084
- Itoh, Y., J. Watanabe, H. Fukada, R. Mizuno, Y. Kezuka, T. Nonaka, and T. Watanabe. 2006. Importance of Trp59 and Trp60 in chitin-binding, hydrolytic, and antifungal activities of Streptomyces griseus chitinase C. Appl. Microbiol. Biotechnol. 72: 1176-1184 https://doi.org/10.1007/s00253-006-0405-7
-
Lim
$\acute{o}$ n, M. C., Jos$\acute{e}$ A. Pintor-Toro, and Tah$\acute{i}$ a. Ben$\acute{i}$ tez. 1999. Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33-kDa chitinase. Phytopathology 89: 254-261 https://doi.org/10.1094/PHYTO.1999.89.3.254 - Limon, M. C., E. Margolles-Clark, T. Benitez, and M. Penttila. 2001. Addition of substrate-binding domains increases substratebinding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiol. Lett. 198: 57-63
-
Lim
$\acute{o}$ n, M. C., M. R. Chac$\acute{o$ n, R. Mej$\acute{i$ as, J. Delgado-Jarana, A. M. Rinc$\acute{o$ n, A. C. Cod$\acute{o$ n, and T. Ben$\acute{i}$ tez. 2004. Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Appl. Microbiol. Biotechnol. 64: 675-685 https://doi.org/10.1007/s00253-003-1538-6 - Manoil, C. and J. Beckwith. 1986. A genetic approach to analyzing membrane protein topology. Science 233: 1403-1408 https://doi.org/10.1126/science.3529391
- Morimoto, K., S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 1997. Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain. J. Bacteriol. 179: 7306-7314
- Nixon, A. E., M. Ostermeier, and S. Benkovic. 1998. Hybrid enzymes: Manipulating enzyme design. Trends Biotechnol. 16:258-264 https://doi.org/10.1016/S0167-7799(98)01204-9
- Ohno, T., S. Armand, T. Hata, N. Nikaidou, B. Henrissat, M. Mitsutomi, and T. Watanabe. 1996. A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT6037. J. Bacteriol. 178: 5065-5070
- Ulmer, K. M. 1983. Protein engineering. Science 219: 666-671 https://doi.org/10.1126/science.6572017
- Wang, F. P., Q. Li, Y. Zhou, M. G. Li, and X. Xiao. 2003. The C-terminal module of Chi1 from Aeromonas caviae CB101 has a function in substrate binding and hydrolysis. Proteins 53:908-916 https://doi.org/10.1002/prot.10501
- Watanabe, T., K. Suzuki, W. Oyanagi, K. Ohnishi, and H. Tanaka. 1990. Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin. J. Biol. Chem. 265: 15659-15665
- Watanabe, T., Y. Ito, T. Yamada, M. Hashimoto, S. Sekine, and H. Tanaka. 1994. The roles of the C-terminal domain and type III domains of chitinase Al from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176: 4465-4472
Cited by
- Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus vol.48, pp.4, 2009, https://doi.org/10.1016/j.fgb.2010.12.007
- Molecular Docking and Site-directed Mutagenesis of a Bacillus thuringiensis Chitinase to Improve Chitinolytic, Synergistic Lepidopteran-larvicidal and Nematicidal Activities vol.11, pp.3, 2009, https://doi.org/10.7150/ijbs.10632