DOI QR코드

DOI QR Code

Ethanol Production from Rice Winery Waste - Rice Wine Cake by Simultaneous Saccharification and Fermentation Without Cooking

  • Vu, Van Hanh (Department of Bioscience and Biotechnology, University of Suwon) ;
  • Kim, Keun (Department of Bioscience and Biotechnology, University of Suwon)
  • 발행 : 2009.10.31

초록

Ethanol production by the simultaneous saccharification and fermentation (SSF) of low-value rice wine cake (RWC) without cooking was investigated. RWC is the filtered solid waste of fermented rice wine mash and contains 53% raw starch. For the SSF, the RWC slurry was mixed with the raw-starch-digesting enzyme of Rhizopus sp. and yeast, where the yeast strain was selected from 300 strains and identified as Saccharomyces cerevisiae KV25. The highest efficiency (94%) of ethanol production was achieved when the uncooked RWC slurry contained 23.03% starch. The optimal SSF conditions were determined as 1.125 units of the raw-starch-digesting enzyme per gram of RWC, a fermentation temperature of $30^{\circ}C$, slurry pH of 4.5, 36-h-old seeding culture, initial yeast cell number of $2{\times}10^7$ per ml of slurry, 17 mM of urea as the nitrogen additive, 0.25 mM of $Cu^{2+}$ as the metal ion additive, and a fermentation time of 90 h. Under these optimal conditions, the ethanol production resulting from the SSF of the uncooked RWC slurry was improved to 16.8% (v/v) from 15.1% (v/v) of pre-optimization.

키워드

참고문헌

  1. Adesanya, O. A., K. A. Oluyemi, S. J. Josiah, R. A. Adesanya, L. A. J. Shittu, D. A. Ofusori, M. A. Bankole, and G. B. Babalola. 2008. Ethanol production by Saccharomyces cerevisiae from cassava peel hydrolysate. Internet J. Microbiol. 5(1)
  2. Akin-osanaiye, B. C., H. C. Nzelibe, and A. S. Agbaji. 2005. Production of ethanol from Carica papaya (pawpaw) agro waste: Effect of saccharification and different treatments on ethanol yield. Afr. J. Biotechnol. 4: 657-659
  3. Alison, M., L. M. Jones, and W. M. Ingledew. 1994. Fuel alcohol production: Optimization of temperature for efficient very-high-gravity fermentation. Appl. Environ. Microbiol. 60:1048-1051
  4. Azenha, M., M. T. Vasconcelos, and P. M. Ferreira. 2000. The influence of Cu concentration on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol. Bioeng. 90: 163-167
  5. Banerjee, M., S. Debnath, and S. K. Majumdar. 1988. Production of alcohol from starch by direct fermentation. Biotechnol. Bioeng. 32: 831-834 https://doi.org/10.1002/bit.260320616
  6. Blackwell, K., I. Singleton, and J. Tobin. 1995. Metal cation uptake by yeast: A review. Appl. Microbiol. Biotechnol. 43:579-584
  7. Borrego, F., J. M. Obon, M. C$\acute{a}$novas, A. Manjon, and J. L. Iborra. 1988. pH influence on ethanol production and retained biomass in a passively immobilized Zymomonas mobilis system. Biotechnol. Lett. 10: 437-442 https://doi.org/10.1007/BF01087446
  8. Casey, G. P., C. A. Magnus, and W. M. Ingledew. 1984. High gravity brewing: Effects of nutrition on yeast composition, fermentative ability, and alcohol production. Appl. Environ. Microbiol. 48: 639-646
  9. Chandrasena, G., G. Walker, and H. Staioes. 1997. Use of response surfaces to investigate metal ion interactions in yeast fermentations. J. Am. Soc. Brew. Chem. 55: 24-29
  10. Fukushima, S. and K. Yamade. 1988. A novel process of ethanol production accompanied by extraction of sugar in cane chips. J. Ferment. Technol. 66: 423-426 https://doi.org/10.1016/0385-6380(88)90009-X
  11. Henry, T., P. C. Iwen, and S. H. Hinrichs. 2000. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J. Clin. Microbiol. 38: 1510-1515
  12. Ingledew, W. M. 2005. Improvements in alcohol technology through advancements in fermentation technology. Getreidetechnologie 59: 308-311
  13. Isono, Y. and A. Hoshino. 2000. Production of ethanol using granulated yeast cells prepared by a spray dryer. J. Gen. Appl. Microbiol. 46: 231-234 https://doi.org/10.2323/jgam.46.231
  14. Kelly, C. T., M. A. McTigue, E. M. Doyle, and W. M. Fogarty. 1995. The raw starch degrading alkaline amylase of Bacillus sp. IMD 370. J. Ind. Microbiol. 15: 446-448 https://doi.org/10.1007/BF01569973
  15. Lee, W. G., J. S. Lee, J. P. Lee, C. S. Shin, M.S. Kim, and S. C. Park. 1996. Effect of surfactants on ethanol fermentation using glucose and cellulosic hydrolyzates. Biotechnol. Lett. 18: 299-304
  16. Lim, Y. S., S. M. Bae, and K. Kim. 2005. Mass production of yeast spores from compressed yeast. J. Microbiol. Biotechnol. 15: 568-572
  17. Malek, A., E. Torny, B. Johan, W. Anders, G. Mats, T. Folke, and Z. Guido. 2003. The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enz. Microb. Technol. 33: 71-78 https://doi.org/10.1016/S0141-0229(03)00087-5
  18. Matsumoto, N., H. Yoshizumi, S. Miyata, and S. Inoue. 1985. Development of the non-cooking and low temperature cooking systems for alcoholic fermentation of grains. Nippon Nogeikagaku Kaishi 59: 291-299 https://doi.org/10.1271/nogeikagaku1924.59.291
  19. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  20. Nwabueze, T. U. and U. Otunwa. 2006. Effect of supplementation of African breadfruit (Treculia africana) hulls with organic wastes on growth characteristics of Saccharomyces cerevisiae. Afr. J. Biotechnol. 5: 1494-1498
  21. O'Connor-Cox, E. S. C., J. Paik, and W. M. Ingledew. 1991. Improved ethanol yields through supplementation with excess assimilable nitrogen. J. Ind. Microbiol. 8: 45-52 https://doi.org/10.1007/BF01575590
  22. Ratnam, B., R. S. Subba, D. Mendu, R. M. Narasimha, and C. Ayyanna. 2005. Optimization of medium constituents and fermentation conditions for the production of ethanol from palmyra jaggery using response surface methodology. World J. Microbiol. Biotechnol. 21: 399-406 https://doi.org/10.1007/s11274-004-2461-4
  23. Rose, A. H. 1987. Responses to the chemical environment, pp. 15-20. In A. H. Rose and J. S. Harrison (eds.). The Yeast, 2nd Ed. Academic Press, London
  24. Saha, B. C. and S. Ueda. 1983. Alcoholic fermentation of raw sweet potato by a nonconventional method using Endomycopsis fibuligera glucoamylase preparation. Biotechnol. Bioeng. 25:1181-1186 https://doi.org/10.1002/bit.260250425
  25. Silva, J. and R. Williams. 1993. The Biological Chemistry of the Elements. Clarendon Press, New York
  26. Thomas, K. C. and W. M. Ingledew. 1990. Fuel alcohol production: Effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl. Environ. Microbiol. 56:2046-2050
  27. Tang, Y. Q., K. Yoji, L. Kai, Z. A. Ming, M. Shigeru, L. W. Xiao, and K. Kenji. 2008. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass Bioener. 32: 1037-1045 https://doi.org/10.1016/j.biombioe.2008.01.027
  28. Verma, G., P. Nigam, D. Singh, and K. Chaudhary. 2000. Bioconversion of starch to ethanol in a single-step process by co-culture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour. Technol. 72: 261-266 https://doi.org/10.1016/S0960-8524(99)00117-0
  29. White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc., San Diego, CA
  30. Yamamoto, S. 1994. Raw starch-digesting enzyme (maltooligosaccharide producing type) of Zoogeloea ramigera. J. Appl. Glycosci. 41: 283-289
  31. Zaldivar, J., J. Nielsen, and O. Olson. 2001. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Biochem. Biotechnol. 56: 17-34

피인용 문헌

  1. High-Cell-Density Fed-Batch Culture of Saccharomyces cerevisiae KV-25 Using Molasses and Corn Steep Liquor vol.19, pp.12, 2009, https://doi.org/10.4014/jmb.0907.07027
  2. Bioethanol from sea lettuce with the use of crude enzymes derived from waste vol.13, pp.4, 2009, https://doi.org/10.1007/s10163-011-0026-9
  3. Construction of a Thermotolerant Saccharomyces cerevisiae Strain for Bioethanol Production with Reduced Fermentation Time and Saccharifying Enzyme Dose vol.22, pp.10, 2009, https://doi.org/10.4014/jmb.1203.03069
  4. Evaluation of buckwheat and barley tea wastes as ethanol fermentation substrates vol.14, pp.3, 2009, https://doi.org/10.1007/s10163-012-0059-8
  5. Brief Aims and Scope vol.96, pp.9, 2009, https://doi.org/10.1002/jsfa.7417
  6. Production of the natural iron chelator deferriferrichrysin from Aspergillus oryzae and evaluation as a novel food‐grade antioxidant vol.96, pp.9, 2016, https://doi.org/10.1002/jsfa.7469