References
- Berger, E., B. A. Ramsay, J. A. Ramsay, C. Chavarie, and G. Braunegg. 1989. PHB recovery by hypochlorite digestion. Biotechnol. Tech. 3: 227-232 https://doi.org/10.1007/BF01876053
- Brodhagen, M., M. D. Henkels, and J. E. Loper. 2004. Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 70: 1758-1766 https://doi.org/10.1128/AEM.70.3.1758-1766.2004
- Byers, J. T., C. Lucas, G. P. C. Salmond, and M. Welch. 2002. Nonenzymatic turnover of an Erwinia carotovora quorumsensing signaling molecule. J. Bacteriol. 184: 1758-1766
- Chan, E. C. 1994. Cloning a mutated trp operon for the biosynthesis of an antibiotic agent. Biotechnol. Lett. 16: 1021-1026 https://doi.org/10.1007/BF01022396
- Chang, C. J., H. G. Floss, D. J. Hook, J. A. Mabe, P. E. Manni, L. L. Martin, K. Schroeder, and T. L. Shieh. 1981. The biosynthesis of the antibiotic pyrrolnitrin by Pseudomonas aureofaciens. J. Antibiot. 34: 555-566 https://doi.org/10.7164/antibiotics.34.555
- Chen, C.-C., L. Riadi, S.-J. Suh, D. E. Ohman, and L.-K. Ju. 2005. Degradation and synthesis kinetics of quorum-sensing autoinducer in Pseudomonas aeruginosa cultivation. J. Biotechnol. 117: 1-10 https://doi.org/10.1016/j.jbiotec.2005.01.003
- Corbell, N. and J. E. Loper. 1995. A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J. Bacteriol. 177: 6230-6236
- De Laurentis, W., L. Khim, J. L. R. Anderson, A. Adam, R. S. Philips, S. K. Chapman, K.-H. van Pee, and J. H. Naismith. 2007. The second enzyme in pyrrolnitrin biosynthesis pathway is related to the heme-dependent dioxygenase superfamily. Biochemistry 46: 12393-12404 https://doi.org/10.1021/bi7012189
- Dong, Y.-H. and L.-H. Zhang. 2005. Quorum sensing and quorum-quenching enzymes. J. Microbiol. 43: 101-109
- Dubuis, C. and D. Haas. 2007. Cross-species gacA-controlled induction of antibiosis in pseudomonads. Appl. Environ. Microbiol. 73: 650-654 https://doi.org/10.1128/AEM.01681-06
- Duerkrop, B. A., R. L. Ulrich, and E. P. Greenberg. 2007. Octanoyl-homoserine lactone is the cognate signal for Burkholderia mallei BmaR1-BmaI1 quorum sensing. J. Bacteriol. 189: 5034-5040 https://doi.org/10.1128/JB.00317-07
-
Duffy, B. K. and G. D
$\acute{e}$ fago. 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65:2429-2438 -
Duffy, B. K. and Genevi
$\grave{e}$ ve D$\acute{e}$ fago 2000. Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 66: 3142-3150 https://doi.org/10.1128/AEM.66.8.3142-3150.2000 - Elander, R. P., J. M. Mabe, R. H. Hamill, and M. Gorman. 1968. Metabolism of tryptophans by Pseudomonas aureofaciens. Appl. Microbiol. 16: 753-758
- El-Banna, N. and G. Winkelmann. 1998. Pyrrolnitrin from Burkholderia cepacia: Antibiotic activity against fungi and novel activities against Streptomyces. J. Appl. Microbiol. 85: 69-78 https://doi.org/10.1046/j.1365-2672.1998.00473.x
- Gunther IV, N. W., A. NuTEX>$\tilde{n}$ez, W. Fett, and D. K. Y. Solaiman. 2005. Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl. Environ. Microbiol. 71: 2288-2293 https://doi.org/10.1128/AEM.71.5.2288-2293.2005
- Hamill, R. L., R. Elander, J. Mabe, and M. Gorman. 1968. Metabolism of tryptophans by Pseudomonas aureofaciens. V. Conversion of tryptophan to pyrrolnitrin. Antimicrob. Agents Chemother. 388-396
-
Hammer, P. E., D. S. Hill, S. T. Lam, K.-H. van P
$\acute{e}$ e, and J. M. Ligon. 1997. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl. Environ. Microbiol. 63: 2147-2154 - Hoffmann, N. and B. H. A. Rehm. 2005. Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads. Biotechnol. Lett. 27: 279-282 https://doi.org/10.1007/s10529-004-8353-8
- Holzer, M., W. Burd, H.-U. Reibig, and K.-H. Van Pee. 2001. Substrate specificity and regioselectivity of tryptophan 7-halogenase from Pseudomonas fluorescens BL915. Adv. Synth. Catal. 343:591-595 https://doi.org/10.1002/1615-4169(200108)343:6/7<591::AID-ADSC591>3.0.CO;2-E
- Hwang, J., W. S. Chilton, and D. M. Benson. 2002. Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biol. Control 25: 56-63 https://doi.org/10.1016/S1049-9644(02)00044-0
- Kirner, S., P. E. Hammer, D. S. Hill, A. Altmann, I. Fisher, L. J. Weislo, M. Lanahan, K.-H. van Pee, and J. M. Ligon. 1998. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J. Bacteriol. 180: 1939-1943
- Leadbetter, J. R. and E. P. Greenberg. 2000. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182: 6921-6926 https://doi.org/10.1128/JB.182.24.6921-6926.2000
- Liu, X., M. Bimerew, Y. Ma, H. Muller, M. Ovardis, L. Eberl, G. Berg, and L. Chernin. 2007. Quorum sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol. Lett. 270: 299-305 https://doi.org/10.1111/j.1574-6968.2007.00681.x
- Nowak-Thompson, B., N. Chaney, J. S. Wing, S. J. Gould, and J. E. Loper. 1999. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J. Bacteriol. 181: 2166-2174
- Reddy, C. S. K., R. Ghai, and R. V. C. Kalia. 2003. Polyhydroxyalkanoates: An overview. Biores. Technol. 87: 137-146 https://doi.org/10.1016/S0960-8524(02)00212-2
-
Ruiz, J. A., N. I. L
$\acute{o}$$\acute{e}$ - Salcher, O. and F. Lingens. 1980. Isolation and characterization of Pseudomonas aureofaciens ATCC 15926 with an increased capacity for synthesis of pyrrolnitrin. J. Gen. Microbiol. 118:509-513
- Salcher, O. and F. Lingens. 1980. Metabolism of tryptophan by Pseudomonas aureofaciens and its relationship to pyrrolnitrin biosynthesis. J. Gen. Microbiol. 121: 465-471
- Schnider, U., C. Keel, C. Voisard, G. Defago, and D. Haas. 1995. Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHA0: Mutational inactivation of the genes results in overinduction of the antibiotic pyoluteorin. Appl. Environ. Microbiol. 61: 3856-3864
- Schnider, U., C. Keel, C. Blumer, J. Troxler, G. Defago, and D. Haas. 1995. Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J. Bacteriol. 177: 5387-5392
- Seeger, M., M. Zielinski, K. N. Timmis, and B. Hofer. 1999. Regiospecificity of dioxygenation of di- to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400. Appl. Environ. Microbiol. 65: 3614-3621
- Shi, H.-P., C.-M. Lee, and W.-H. Ma. 2007. Influence of electron acceptor, carbon, nitrogen, and phosphorus on polyhydroxyalkanoate (PHA) production by Brachymonas sp. P12. World J. Microbiol. Biotechnol. 23: 625-632 https://doi.org/10.1007/s11274-006-9271-9
- Stubbe, J. and J. Tian. 2003. Polyhydroxyalkanoate (PHA) homeostasis: The role of PHA synthase. Nat. Prod. Rep. 20:445-457 https://doi.org/10.1039/b209687k
- Thomas, M. G., M. D. Burkart, and C. T. Walsh. 2002. Conversion of L-proline to pyrrolyl-2-carboxy-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chem. Biol. 9:171-184 https://doi.org/10.1016/S1074-5521(02)00100-X
- van Rij, E. T., M. Wesselink, T. F. C. Woeng, G. V. Bloemberg, and B. J. J. Lugtenberg. 2004. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chloraphis PCL1391. Mol. Plant Microbe Interact. 17: 557-566 https://doi.org/10.1094/MPMI.2004.17.5.557
-
Velazquez, F., K. Pfl
$\ddot{u}$ ger, I. Cases, L. I. de Eugenio, and V$\acute{i}$ cto de Lorenzo. 2007. The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida. J. Bacteriol. 189: 4529-4533 https://doi.org/10.1128/JB.00033-07 - Wang, Y.-J., and J. R. Leadbetter. 2005. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl. Environ. Microbiol. 71: 1291-1299 https://doi.org/10.1128/AEM.71.3.1291-1299.2005
- Wattanaphon, H. T., A. Kerdsin, C. Thannacharoen, P. Sangvanich, and A. S. Vangnai. 2008. A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. J. Appl. Microbiol. 108: 1-8 https://doi.org/10.1111/j.1365-2672.2009.04370.x
- Wood, D. W., F. Gong, M. M. Daykin, P. Williams, and L S Pierson III. 1997. N-Acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J. Bacteriol. 179: 7663-7670
-
Yates, E. A., B. Philipp, C. Buckley, S. Atkinson, S. R. Chhabra, R. E. Sockett, C
$\acute{a}$ mara, Miguel et al. 2002. N-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain lengthdependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 70: 5635-5646 https://doi.org/10.1128/IAI.70.10.5635-5646.2002 - Yu, J. and Y. Si. 2004. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids. Biotechnol. Prog. 20: 1015-1024 https://doi.org/10.1021/bp034380e
- Zhou, H., F. Yao, D. P. Roberts, and T. G. Lessie. 2003. AHLdeficient mutants of Burkholderia ambifaria BC-F have decreased antifungal activity. Curr. Microbiol. 47: 174-179 https://doi.org/10.1007/s00284-002-3926-z
Cited by
- Structure-inhibitory activity relationships of pyrrolnitrin analogues on its biosynthesis vol.89, pp.3, 2009, https://doi.org/10.1007/s00253-010-2872-0
- Enacyloxins Are Products of an Unusual Hybrid Modular Polyketide Synthase Encoded by a Cryptic Burkholderia ambifaria Genomic Island vol.18, pp.5, 2009, https://doi.org/10.1016/j.chembiol.2011.01.020
- Identification of N-acyl homoserine lactones produced by Gluconacetobacter diazotrophicus PAL5 cultured in complex and synthetic media vol.194, pp.7, 2012, https://doi.org/10.1007/s00203-012-0794-1
- Gluconacetobacter diazotrophicus PAL5 possesses an active quorum sensing regulatory system vol.106, pp.3, 2009, https://doi.org/10.1007/s10482-014-0218-0
- Biochemical Association of Metabolic Profile and Microbiome in Chronic Pressure Ulcer Wounds vol.10, pp.5, 2009, https://doi.org/10.1371/journal.pone.0126735
- Chemical composition and antimicrobial activity of chia (Salvia hispanica L.) essential oil vol.244, pp.9, 2009, https://doi.org/10.1007/s00217-018-3080-x
- Functional identification of the prnABCD operon and its regulation in Serratia plymuthica vol.102, pp.8, 2009, https://doi.org/10.1007/s00253-018-8857-0
- Pyrrolnitrin from Rhizospheric Serratia marcescens NCIM 5696: Optimization of Process Parameters Using Statistical Tools and Seed-Applied Bioprotectants for Vigna radiata (L.) Against Fusarium oxyspor vol.190, pp.3, 2020, https://doi.org/10.1007/s12010-019-03123-w
- A rapid screening method for the detection of specialised metabolites from bacteria: Induction and suppression of metabolites from Burkholderia species vol.178, pp.None, 2009, https://doi.org/10.1016/j.mimet.2020.106057