DOI QR코드

DOI QR Code

Effects of Nutrients on Quorum Signals and Secondary Metabolite Productions of Burkholderia sp. O33

  • Keum, Young-Soo (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Young-Ju (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Youn-Hyung (Department of Horticultural Biotechnology, KyungHee University) ;
  • Kim, Jeong-Han (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2009.10.31

Abstract

Several bioactive metabolites, including pyrrolnitrin, N-acylhomoserine lactones, and polyhydroxyalkanoates were isolated from Burkholderia sp. O33. Effects of various nutrients, including sugars, gluconolactone, glycerol, tryptophan, chloride, and zinc were investigated in relation to the production of these metabolites. Logarithmic increase of pyrrolnitrin was observed between 2-5 days and reached a maximum at 7-10 days. Tryptophan concentration reached the maximum at 3 days, whereas 7-chlorotryptophan was gradually increased throughout the studies. Among various carbon sources, gluconolactone, trehalose, and glycerol enhanced pyrrolnitrin production, whereas strong inhibitory effects were found with glucose. Relative concentrations of pyrrolnitrin and its precursors were in the order of pyrrolnitrin$\gg$dechloroaminopyrrolnitrin or aminopyrrolnitrin throughout the experiments. Among three N-acylhomoserine lactones, the N-octanoyl analog was the most abundant quorum sensing signal, of which the concentrations reached the maximum in 2-3 days, followed by a rapid dissipation to trace level. No significant changes in pyrrolnitrin biosynthesis were observed by external addition of N-acylhomoserine lactones. Polyhydroxyalkanoates accumulated up to 3-4 days and decreased slowly thereafter. According to the kinetic analyses, no strong correlations were found between the levels of pyrrolnitrin, N-acylhomoserine lactones, and polyhydroxyalkanoates.

Keywords

References

  1. Berger, E., B. A. Ramsay, J. A. Ramsay, C. Chavarie, and G. Braunegg. 1989. PHB recovery by hypochlorite digestion. Biotechnol. Tech. 3: 227-232 https://doi.org/10.1007/BF01876053
  2. Brodhagen, M., M. D. Henkels, and J. E. Loper. 2004. Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 70: 1758-1766 https://doi.org/10.1128/AEM.70.3.1758-1766.2004
  3. Byers, J. T., C. Lucas, G. P. C. Salmond, and M. Welch. 2002. Nonenzymatic turnover of an Erwinia carotovora quorumsensing signaling molecule. J. Bacteriol. 184: 1758-1766
  4. Chan, E. C. 1994. Cloning a mutated trp operon for the biosynthesis of an antibiotic agent. Biotechnol. Lett. 16: 1021-1026 https://doi.org/10.1007/BF01022396
  5. Chang, C. J., H. G. Floss, D. J. Hook, J. A. Mabe, P. E. Manni, L. L. Martin, K. Schroeder, and T. L. Shieh. 1981. The biosynthesis of the antibiotic pyrrolnitrin by Pseudomonas aureofaciens. J. Antibiot. 34: 555-566 https://doi.org/10.7164/antibiotics.34.555
  6. Chen, C.-C., L. Riadi, S.-J. Suh, D. E. Ohman, and L.-K. Ju. 2005. Degradation and synthesis kinetics of quorum-sensing autoinducer in Pseudomonas aeruginosa cultivation. J. Biotechnol. 117: 1-10 https://doi.org/10.1016/j.jbiotec.2005.01.003
  7. Corbell, N. and J. E. Loper. 1995. A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J. Bacteriol. 177: 6230-6236
  8. De Laurentis, W., L. Khim, J. L. R. Anderson, A. Adam, R. S. Philips, S. K. Chapman, K.-H. van Pee, and J. H. Naismith. 2007. The second enzyme in pyrrolnitrin biosynthesis pathway is related to the heme-dependent dioxygenase superfamily. Biochemistry 46: 12393-12404 https://doi.org/10.1021/bi7012189
  9. Dong, Y.-H. and L.-H. Zhang. 2005. Quorum sensing and quorum-quenching enzymes. J. Microbiol. 43: 101-109
  10. Dubuis, C. and D. Haas. 2007. Cross-species gacA-controlled induction of antibiosis in pseudomonads. Appl. Environ. Microbiol. 73: 650-654 https://doi.org/10.1128/AEM.01681-06
  11. Duerkrop, B. A., R. L. Ulrich, and E. P. Greenberg. 2007. Octanoyl-homoserine lactone is the cognate signal for Burkholderia mallei BmaR1-BmaI1 quorum sensing. J. Bacteriol. 189: 5034-5040 https://doi.org/10.1128/JB.00317-07
  12. Duffy, B. K. and G. D$\acute{e}$fago. 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65:2429-2438
  13. Duffy, B. K. and Genevi$\grave{e}$ve D$\acute{e}$fago 2000. Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 66: 3142-3150 https://doi.org/10.1128/AEM.66.8.3142-3150.2000
  14. Elander, R. P., J. M. Mabe, R. H. Hamill, and M. Gorman. 1968. Metabolism of tryptophans by Pseudomonas aureofaciens. Appl. Microbiol. 16: 753-758
  15. El-Banna, N. and G. Winkelmann. 1998. Pyrrolnitrin from Burkholderia cepacia: Antibiotic activity against fungi and novel activities against Streptomyces. J. Appl. Microbiol. 85: 69-78 https://doi.org/10.1046/j.1365-2672.1998.00473.x
  16. Gunther IV, N. W., A. NuTEX>$\tilde{n}$ez, W. Fett, and D. K. Y. Solaiman. 2005. Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl. Environ. Microbiol. 71: 2288-2293 https://doi.org/10.1128/AEM.71.5.2288-2293.2005
  17. Hamill, R. L., R. Elander, J. Mabe, and M. Gorman. 1968. Metabolism of tryptophans by Pseudomonas aureofaciens. V. Conversion of tryptophan to pyrrolnitrin. Antimicrob. Agents Chemother. 388-396
  18. Hammer, P. E., D. S. Hill, S. T. Lam, K.-H. van P$\acute{e}$e, and J. M. Ligon. 1997. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl. Environ. Microbiol. 63: 2147-2154
  19. Hoffmann, N. and B. H. A. Rehm. 2005. Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads. Biotechnol. Lett. 27: 279-282 https://doi.org/10.1007/s10529-004-8353-8
  20. Holzer, M., W. Burd, H.-U. Reibig, and K.-H. Van Pee. 2001. Substrate specificity and regioselectivity of tryptophan 7-halogenase from Pseudomonas fluorescens BL915. Adv. Synth. Catal. 343:591-595 https://doi.org/10.1002/1615-4169(200108)343:6/7<591::AID-ADSC591>3.0.CO;2-E
  21. Hwang, J., W. S. Chilton, and D. M. Benson. 2002. Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biol. Control 25: 56-63 https://doi.org/10.1016/S1049-9644(02)00044-0
  22. Kirner, S., P. E. Hammer, D. S. Hill, A. Altmann, I. Fisher, L. J. Weislo, M. Lanahan, K.-H. van Pee, and J. M. Ligon. 1998. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J. Bacteriol. 180: 1939-1943
  23. Leadbetter, J. R. and E. P. Greenberg. 2000. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182: 6921-6926 https://doi.org/10.1128/JB.182.24.6921-6926.2000
  24. Liu, X., M. Bimerew, Y. Ma, H. Muller, M. Ovardis, L. Eberl, G. Berg, and L. Chernin. 2007. Quorum sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol. Lett. 270: 299-305 https://doi.org/10.1111/j.1574-6968.2007.00681.x
  25. Nowak-Thompson, B., N. Chaney, J. S. Wing, S. J. Gould, and J. E. Loper. 1999. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J. Bacteriol. 181: 2166-2174
  26. Reddy, C. S. K., R. Ghai, and R. V. C. Kalia. 2003. Polyhydroxyalkanoates: An overview. Biores. Technol. 87: 137-146 https://doi.org/10.1016/S0960-8524(02)00212-2
  27. Ruiz, J. A., N. I. L$\acute{o}$$\acute{e}$
  28. Salcher, O. and F. Lingens. 1980. Isolation and characterization of Pseudomonas aureofaciens ATCC 15926 with an increased capacity for synthesis of pyrrolnitrin. J. Gen. Microbiol. 118:509-513
  29. Salcher, O. and F. Lingens. 1980. Metabolism of tryptophan by Pseudomonas aureofaciens and its relationship to pyrrolnitrin biosynthesis. J. Gen. Microbiol. 121: 465-471
  30. Schnider, U., C. Keel, C. Voisard, G. Defago, and D. Haas. 1995. Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHA0: Mutational inactivation of the genes results in overinduction of the antibiotic pyoluteorin. Appl. Environ. Microbiol. 61: 3856-3864
  31. Schnider, U., C. Keel, C. Blumer, J. Troxler, G. Defago, and D. Haas. 1995. Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J. Bacteriol. 177: 5387-5392
  32. Seeger, M., M. Zielinski, K. N. Timmis, and B. Hofer. 1999. Regiospecificity of dioxygenation of di- to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400. Appl. Environ. Microbiol. 65: 3614-3621
  33. Shi, H.-P., C.-M. Lee, and W.-H. Ma. 2007. Influence of electron acceptor, carbon, nitrogen, and phosphorus on polyhydroxyalkanoate (PHA) production by Brachymonas sp. P12. World J. Microbiol. Biotechnol. 23: 625-632 https://doi.org/10.1007/s11274-006-9271-9
  34. Stubbe, J. and J. Tian. 2003. Polyhydroxyalkanoate (PHA) homeostasis: The role of PHA synthase. Nat. Prod. Rep. 20:445-457 https://doi.org/10.1039/b209687k
  35. Thomas, M. G., M. D. Burkart, and C. T. Walsh. 2002. Conversion of L-proline to pyrrolyl-2-carboxy-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chem. Biol. 9:171-184 https://doi.org/10.1016/S1074-5521(02)00100-X
  36. van Rij, E. T., M. Wesselink, T. F. C. Woeng, G. V. Bloemberg, and B. J. J. Lugtenberg. 2004. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chloraphis PCL1391. Mol. Plant Microbe Interact. 17: 557-566 https://doi.org/10.1094/MPMI.2004.17.5.557
  37. Velazquez, F., K. Pfl$\ddot{u}$ger, I. Cases, L. I. de Eugenio, and V$\acute{i}$cto de Lorenzo. 2007. The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida. J. Bacteriol. 189: 4529-4533 https://doi.org/10.1128/JB.00033-07
  38. Wang, Y.-J., and J. R. Leadbetter. 2005. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl. Environ. Microbiol. 71: 1291-1299 https://doi.org/10.1128/AEM.71.3.1291-1299.2005
  39. Wattanaphon, H. T., A. Kerdsin, C. Thannacharoen, P. Sangvanich, and A. S. Vangnai. 2008. A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. J. Appl. Microbiol. 108: 1-8 https://doi.org/10.1111/j.1365-2672.2009.04370.x
  40. Wood, D. W., F. Gong, M. M. Daykin, P. Williams, and L S Pierson III. 1997. N-Acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J. Bacteriol. 179: 7663-7670
  41. Yates, E. A., B. Philipp, C. Buckley, S. Atkinson, S. R. Chhabra, R. E. Sockett, C$\acute{a}$mara, Miguel et al. 2002. N-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain lengthdependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 70: 5635-5646 https://doi.org/10.1128/IAI.70.10.5635-5646.2002
  42. Yu, J. and Y. Si. 2004. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids. Biotechnol. Prog. 20: 1015-1024 https://doi.org/10.1021/bp034380e
  43. Zhou, H., F. Yao, D. P. Roberts, and T. G. Lessie. 2003. AHLdeficient mutants of Burkholderia ambifaria BC-F have decreased antifungal activity. Curr. Microbiol. 47: 174-179 https://doi.org/10.1007/s00284-002-3926-z

Cited by

  1. Structure-inhibitory activity relationships of pyrrolnitrin analogues on its biosynthesis vol.89, pp.3, 2009, https://doi.org/10.1007/s00253-010-2872-0
  2. Enacyloxins Are Products of an Unusual Hybrid Modular Polyketide Synthase Encoded by a Cryptic Burkholderia ambifaria Genomic Island vol.18, pp.5, 2009, https://doi.org/10.1016/j.chembiol.2011.01.020
  3. Identification of N-acyl homoserine lactones produced by Gluconacetobacter diazotrophicus PAL5 cultured in complex and synthetic media vol.194, pp.7, 2012, https://doi.org/10.1007/s00203-012-0794-1
  4. Gluconacetobacter diazotrophicus PAL5 possesses an active quorum sensing regulatory system vol.106, pp.3, 2009, https://doi.org/10.1007/s10482-014-0218-0
  5. Biochemical Association of Metabolic Profile and Microbiome in Chronic Pressure Ulcer Wounds vol.10, pp.5, 2009, https://doi.org/10.1371/journal.pone.0126735
  6. Chemical composition and antimicrobial activity of chia (Salvia hispanica L.) essential oil vol.244, pp.9, 2009, https://doi.org/10.1007/s00217-018-3080-x
  7. Functional identification of the prnABCD operon and its regulation in Serratia plymuthica vol.102, pp.8, 2009, https://doi.org/10.1007/s00253-018-8857-0
  8. Pyrrolnitrin from Rhizospheric Serratia marcescens NCIM 5696: Optimization of Process Parameters Using Statistical Tools and Seed-Applied Bioprotectants for Vigna radiata (L.) Against Fusarium oxyspor vol.190, pp.3, 2020, https://doi.org/10.1007/s12010-019-03123-w
  9. A rapid screening method for the detection of specialised metabolites from bacteria: Induction and suppression of metabolites from Burkholderia species vol.178, pp.None, 2009, https://doi.org/10.1016/j.mimet.2020.106057