DOI QR코드

DOI QR Code

Novel Low-Temperature-Active Phytase from Erwinia carotovora var. carotovota ACCC 10276

  • Huang, Huoqing (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Luo, Huiying (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Wang, Yaru (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Fu, Dawei (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Shao, Na (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Yang, Peilong (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Meng, Kun (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences) ;
  • Yao, Bin (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
  • Published : 2009.10.31

Abstract

A phytase with high activity at low temperatures has great potential for feed applications, especially in aquaculture. Therefore, this study used a degenerate PCR and TAIL PCR to clone a phytase gene from Erwinia carotovora var. carotovota, the cause of soft rot of vegetables in the ground or during cold storage. The full-length 2.5-kb fragment included an open reading frame of 1,302 bp and encoded a putative phytase of 45.3 kDa with a 50% amino acid identity to the Klebsiella pneumoniae phytase. The phytase contained the active site RHGXRXP and HD sequence motifs that are typical of histidine acid phosphatases. The enzyme was expressed in Escherichia coli, purified, and displayed the following characteristics: a high catalytic activity at low temperatures (retaining over 24% activity at $5^{\circ}C$) and remarkably thermal lability (losing >96% activity after incubation at $60^{\circ}C$ for 2 min). The optimal phytase activity occurred at pH 5.5 and ${\sim}49^{\circ}C$, and the enzyme activity rapidly decreased above $40^{\circ}C$. When compared with mesophilic counterparts, the phytase not only exhibited a high activity at a low temperature, but also had a low $K_m$ and high $k_{cat}$. These temperature characteristics and kinetic parameters are consistent with low-temperature-active enzymes. To our knowledge, this would appear to be the first report of a low-temperature-active phytase and its heterogeneous expression.

Keywords

References

  1. Asryants, R. A., I. V. Duszenkova, and N. K. Nagradova. 1985. Determination of Sepharose-bound protein with Coomassie brilliant blue G-250. Anal. Biochem. 151: 571-574 https://doi.org/10.1016/0003-2697(85)90222-2
  2. Boyce, A. and G. Walsh. 2006. Comparison of selected physicochemical characteristics of commercial phytases relevant to their application in phosphate pollution abatement. J. Environ. Sci. Health A 41: 789-98 https://doi.org/10.1080/10934520600614397
  3. Cao, L., W. Wang, C. Yang, Y. Yang, J. Diana, A. Yakupitiyage, Z. Luo, and D. Li. 2007. Application of microbial phytase in fish feed. Enzyme Microb. Technol. 40: 497-507 https://doi.org/10.1016/j.enzmictec.2007.01.007
  4. Dassa, J., C. Marck, and P. L. Boquet. 1990. The complete nucleotide sequence of the Escherichia coli appA reveals significant homology between pH 2.5 acid phosphatase and glucose-1-phosphatase. J. Bacteriol. 172: 5497-5500
  5. Elkhalil, E. A. I., K. M$\ddot{a}$nner, R. Borriss, and O. Simon. 2007. In vitro and in vivo characteristics of bacterial phytases and their efficacy in broiler chickens. Brit. Poult. Sci. 48: 64-70 https://doi.org/10.1080/00071660601148195
  6. Feller, G., E. Narinx, J. Arpigny, M. Aittaleb, E. Baise, S. Genecot, and C. Gerday. 1996. Enzymes from psychrophilic organisms. FEMS Microbiol. Rev. 18: 189-202 https://doi.org/10.1111/j.1574-6976.1996.tb00236.x
  7. Greiner, R. and U. Konietzny. 2006. Phytase for food application. Food Technol. Biotechnol. 44: 125-140
  8. Huang, H., H. Luo, P. Yang, K. Meng, Y. Wang, T. Yuan, Y. Bai, and B. Yao. 2006. A novel phytase with preferable characteristics from Yersinia intermedia. Biochem. Biophys. Res. Commun. 350: 884-889 https://doi.org/10.1016/j.bbrc.2006.09.118
  9. In, M. J., E. S. Jang, Y. J. Kim, and N. S. Oh. 2004. Purification and properties of an extracellular acid phytase from Pseudomonas fragi Y9451. J. Microbiol. Biotechnol. 14: 1004-1008
  10. Konietzny, U. and R. Greiner. 2004. Bacterial phytase: Potential application, in vivo function and regulation of its synthesis. Braz. J. Microbiol. 35: 11-18
  11. Lei, X. and Jes$\acute{u}$s M. Porres. 2003. Phytase enzymology, applications, and biotechnology. Biotechnol. Lett. 25: 1787-1794 https://doi.org/10.1023/A:1026224101580
  12. Lim, D., S. Golovan, C. W. Forsberg, and Z. Jia. 2000. Crystal structures of Escherichia coli phytase and its complex with phytate. Nat. Struct. Biol. 7: 108-113 https://doi.org/10.1038/72371
  13. Luo, H., B. Yao, T. Yuan, Y. Wang, X. Shi, N. Wu, and Y. Fan. 2004. Overexpression of Escherichia coli phytase with high specific activity. Chin. J. Biotechnol. 20: 78-84
  14. Makarewicz, O., S. Dubrac, T. Msadek, and R. Borriss. 2006. Dual role of the PhoP_P response regulator: Bacillus amyloliquefaciens FZB45 phytase gene transcription is directed by positive and negative interactions with the phyC promoter. J. Bacteriol. 188: 6953-6965 https://doi.org/10.1128/JB.00681-06
  15. Mullaney, E. J. and A. H. J. Ullah. 2005. Conservation of cysteine residues in fungal histidine acid phytases. Biochem. Biophys. Res. Commun. 328: 404-408 https://doi.org/10.1016/j.bbrc.2004.12.181
  16. Mullaney, E. J., C. B. Daly, and A. H. J. Ullah. 2001. Advances in phytase research. Adv. Appl. Microbiol. 47: 157-199 https://doi.org/10.1016/S0065-2164(00)47004-8
  17. Mullaney, E. J., D. M. Gibson, and A. H. J. Ullah. 1991. Positive identification of a lambda gt11 clone containing a region of fungal phytase gene by immunoprobe and sequence verification. Appl. Microbiol. Biotechnol. 35: 611-614
  18. Nickolay, V. Z., V. S. Anna, S. G. Mikhail, B. S. Aleksei, and P. S. Sergei. 2004. Gene cloning, expression and characterization of a novel phytase from Obesumbacterium proteus. FEMS Microbiol. Lett. 236: 283-290 https://doi.org/10.1111/j.1574-6968.2004.tb09659.x
  19. Pandey, A., G. Szakacs, C. R. Soccol, J. A. Rodriguez-Leon, and V. T. Soccol. 2001. Production, purification and properties of microbial phytases. Bioresour. Technol. 77: 203-214 https://doi.org/10.1016/S0960-8524(00)00139-5
  20. Pasamontes, L., M. Haiker, M. Wyss, M. Tessier, and A. P. G. M. van Loon. 1997. Gene cloning, purification and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63: 1696-1700
  21. Perombelon, M. C. M. and A. Kelman. 1980. Ecology of the soft rot erwinias. Annu. Rev. Phytopathol. 18: 361-387 https://doi.org/10.1146/annurev.py.18.090180.002045
  22. Reddy, N. R., S. K. Sathe, and D. K. Salunkhe. 1989. Phytases in legumes and cereals. Adv. Food Res. 28: 1-92
  23. Rodriguez, E., Z. A. Wood, P. A. Karplus, and X. Lei. 2000. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch. Biochem. Biophys. 382: 105-112 https://doi.org/10.1006/abbi.2000.2021
  24. Sajidan, A., A. Farouk, R. Greiner, P. Jungblut, E. C. M$\ddot{u}$ller, and R. Borriss. 2004. Molecular and physiological characterization of a 3-phytase from soil bacterium Klebsiella sp. SR1. Appl. Microbiol. Biotechnol. 65: 110-118
  25. Seo, M. J., J. N. Kim, E. A. Cho, H. Park, H. J. Choi, and Y. R. Pyun. 2005. Purification and characterization of a novel extracellular alkaline phytase from Aeromonas sp. J. Microbiol. Biotechnol. 15: 745-748
  26. Siddiqui, K. S. and R. Cavicchioli. 2006. Cold adapted enzymes. Annu. Rev. Biochem. 75: 403-433 https://doi.org/10.1146/annurev.biochem.75.103004.142723
  27. Simon, O. and F. A. Igbasan. 2002. In vitro properties of phytases from various microbial origins. Int. J. Food Sci. Technol. 37:813-822 https://doi.org/10.1046/j.1365-2621.2002.00621.x
  28. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2006. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599 https://doi.org/10.1093/molbev/msm092
  29. Tye, A. J., F. K. Siu, T. Y. Leung, and B. L. Lim. 2002. Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl. Microbiol. Biotechnol. 59: 190-197 https://doi.org/10.1007/s00253-002-1033-5
  30. Unno, Y., K. Okubo, J. Wasaki, T. Shinano, and M. Osaki. 2005. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ. Microbiol. 7: 396-404 https://doi.org/10.1111/j.1462-2920.2004.00701.x
  31. Vohra, A. and T. Satyanarayana. 2003. Phytases: Microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol. 23: 29-60 https://doi.org/10.1080/713609297
  32. Wodzinski, R. J. and A. H. J. Ullah. 1996. Phytase. Adv. Appl. Microbiol. 42: 263-302 https://doi.org/10.1016/S0065-2164(08)70375-7

Cited by

  1. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants vol.30, pp.3, 2010, https://doi.org/10.3109/07388551.2010.487258
  2. Biotechnological uses of enzymes from psychrophiles vol.4, pp.4, 2011, https://doi.org/10.1111/j.1751-7915.2011.00258.x
  3. Phytases: crystal structures, protein engineering and potential biotechnological applications vol.112, pp.1, 2009, https://doi.org/10.1111/j.1365-2672.2011.05181.x
  4. Phytase, a New Life for an “Old” Enzyme vol.1, pp.None, 2009, https://doi.org/10.1146/annurev-animal-031412-103717
  5. A new intracellular phytase of enterobacteria: Isolation and characterization vol.39, pp.4, 2013, https://doi.org/10.1134/s1068162013040146
  6. Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation vol.35, pp.10, 2009, https://doi.org/10.1007/s10529-013-1255-x
  7. Identification of Novel Phytase Genes from an Agricultural Soil-Derived Metagenome vol.24, pp.1, 2009, https://doi.org/10.4014/jmb.1307.07007
  8. The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization vol.98, pp.13, 2009, https://doi.org/10.1007/s00253-013-5421-9
  9. Enzymology and thermal stability of phytase appA mutants vol.5, pp.54, 2009, https://doi.org/10.1039/c5ra02199e
  10. Purification and characterization of a novel cold‐adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic vol.55, pp.8, 2009, https://doi.org/10.1002/jobm.201400865
  11. Phytase activity in lichens vol.208, pp.2, 2009, https://doi.org/10.1111/nph.13454
  12. Microbial production of phytases for combating environmental phosphate pollution and other diverse applications vol.46, pp.6, 2016, https://doi.org/10.1080/10643389.2015.1131562
  13. Extremozymes: A Potential Source for Industrial Applications vol.27, pp.4, 2009, https://doi.org/10.4014/jmb.1611.11006
  14. Biochemical Characterization of a Psychrophilic Phytase from an Artificially Cultivable Morel Morchella importuna vol.27, pp.12, 2009, https://doi.org/10.4014/jmb.1708.08007
  15. A rational design to enhance the resistance of Escherichia coli phytase appA to trypsin vol.102, pp.22, 2009, https://doi.org/10.1007/s00253-018-9327-4