References
-
Abou Hachem, M., E. N. Karlsson, E. Bartonek-Rox
$\AA$ , S. Raghothama, P. J. Simpson, H. J. Gilbert, M. P. Williamson, and O. Holst. 2000. Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: Cloning, expression and binding studies. Biochem. J. 345: 53-60 https://doi.org/10.1042/0264-6021:3450053 -
B
$\acute{e}$ guin, P. 1983. Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal. Biochem. 131:333-336 https://doi.org/10.1016/0003-2697(83)90178-1 -
Boraston, A. B., D. Nurizzo, V. Notenboom, .Val
$\acute{e}$ rie Ducros, D. R. Rose, D. G. Kilburn, and G. J. Davies. 2002. Differential oligosaccharide recognition by evolutionarily-related$\beta$ -1,4 and$\beta$ -1,3 glucan-binding modules. J. Mol. Biol. 319: 1143-1156 https://doi.org/10.1016/S0022-2836(02)00374-1 - Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29:3-23 https://doi.org/10.1016/j.femsre.2004.06.005
-
Derewenda, U., L. Swenson, R. Green, Y. Wei, R. Morosoli, F. Shareck, D. Kluepfel, and Z. S. Derewenda. 1994. Crystal structure, at 2.6-
${\AA}$ resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. J. Biol. Chem. 269: 20811-20814 -
Ducros, Valérie., S. J. Charnock, U. Derewenda, Z. S. Derewenda, Z. Dauter, C. Dupont, Shareck, Fran
$\c{c}$ ois et al. 2000. Substrate specificity in glycoside hydrolase family 10: Structural and kinetic analysis of the Streptomyces lividans xylanase 10A. J. Biol. Chem. 275:23020-23026 https://doi.org/10.1074/jbc.275.30.23020 - Fontes, C., G. P. Hazlewood, E. Morag, J. Hall, B. H. Hirst, and H. J. Gilbert. 1995. Evidence for a general role for noncatalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem. J. 307: 151-158
- Hashimoto, H., Y. Tamai, F. Okazaki, Y. Tamaru, T. Shimizu, T. Araki, and M. Sato. 2005. The first crystal structure of a family 31 carbohydrate-binding module with affinity to beta-1,3-xylan. FEBS Lett. 579: 4324-4328 https://doi.org/10.1016/j.febslet.2005.06.062
-
Hekmat, O., Y. W. Kim, S. J. Williams, S. M. He, and S. G. Withers. 2005. Active-site peptide 'fingerprinting' of glycosidases in complex mixtures by mass spectrometry: Discovery of a novel retaining
$\beta$ -1,4-glycanase in Cellulomonas fimi. J. Biol. Chem. 280: 35126-35135 https://doi.org/10.1074/jbc.M508434200 - Heo, S., J. Kwak, H. W. Oh, D. S. Park, K. S. Bae, D. H. Shin, and H. Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 Isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759
- Khandeparker, R. and M. T. Numan. 2008. Bifunctional xylanases and their potential use in biotechnology. J. Ind. Microbiol. Biot. 35: 635-644 https://doi.org/10.1007/s10295-008-0342-9
-
Leskinen, S., A. M
$\ddot{a}$ ntyl$\ddot{a}$ , R. Fagerstr$\ddot{o}$ m, J. Vehmaanper$\ddot{a}$ , R. Lantto, M. Paloheimo, and P. Suominen. 2005. Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete Nonomuraea flexuosa: Isolation of the genes and characterization of recombinant Xyn11A polypeptides produced in Trichoderma reesei. Appl. Microbiol. Biotechnol. 67: 495-505 https://doi.org/10.1007/s00253-004-1797-x - Li, N., K. Meng, Y. R. Wang, P. J. Shi, H. Y. Luo, Y. G. Bai, P. L. Yang, and B. Yao. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl. Microbiol. Biotechnol. 80: 231-240 https://doi.org/10.1007/s00253-008-1533-z
-
Lin, L., X. Meng, P. F. Liu, Y. Z. Hong, G. B. Wu, X. L. Huang, et al. 2008. Improved catalytic efficiency of endo-
$\beta$ -1, 4-glucanase from Bacillus subtilis BME-15 by directed evolution. Appl. Microbiol. Biotechnol. 82: 671-679 - Lykidis, A., K. Mavromatis, N. Ivanova, I. Anderson, M. Land, G. DiBartolo, et al. 2007. Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J. Bacteriol. 189: 2477-2486 https://doi.org/10.1128/JB.01899-06
-
Mart
$\acute{i}$ nez-Trujillo, A., O. P$\acute{e}$ rez-Avalos, and T. Ponce-Noyola. 2003. Enzymatic properties of a purified xylanase from mutant pn-120 of Cellulomonas flavigena. Enzyme Microb. Technol. 32: 401-406 https://doi.org/10.1016/S0141-0229(02)00313-7 - Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
- Morosoli, R., J. L. Bertrand, F. Mondou, F. Shareck, and D. Kluepfel. 1986. Purification and properties of a xylanase from Streptomyces lividans. Biochem. J. 239: 587-592
- Polizeli, M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi:Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591 https://doi.org/10.1007/s00253-005-1904-7
- Prade, R. A. 1996. Xylanases: From biology to biotechnology. Biotechnol. Genet. Eng. Rev. 13: 101-131 https://doi.org/10.1080/02648725.1996.10647925
- Sahu, S. K., A. G. Krishna, and S. N. Gummadi. 2008. Overexpression of recombinant human phospholipid scramblase 1 in E. coli and its purification from inclusion bodies. Biotechnol. Lett. 30: 2131-2137 https://doi.org/10.1007/s10529-008-9797-z
- Sakka, K., Y. Kojima, T. Kondo, S. Karita, K. Ohmiya, and K. Shimada. 1993. Nucleotide sequence of the Clostridium stercorarium xynA gene encoding xylanase A: Identification of catalytic and cellulose binding domains. Biosci. Biotechnol. Biochem. 57: 273-277 https://doi.org/10.1271/bbb.57.273
- Sambrook, J. and D. W. Russell. 2001. Cold Spring Habor Laboratory Press, Cold Spring Harbor, NY. Molecular Cloning:A Laboratory Manual
-
Shareck, Fran
$\c{c}$ ois, C. Roy, M. Yaguchi, R. Morosoli, and D. Kluepfel. 1991. Sequences of 3 genes specifying xylanases in Streptomyces lividans. Gene 107: 75-82 https://doi.org/10.1016/0378-1119(91)90299-Q - Simpson, P. J., H. F. Xie, D. N. Bolam, H. J. Gilbert, and M. P. Williamson. 2000. The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. J. Biol. Chem. 275:41137-41142 https://doi.org/10.1074/jbc.M006948200
- Teather, R. M. and P. J. Wood. 1982. Use of Congo red polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43: 777-780
- Thomson, J. A. 1993. Molecular biology of xylan degradation. FEMS Microbiol. Rev. 10: 65-82
- Tomme, P., R. A. Warren, and N. R. Gilkes. 1995. Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. 37: 1-81 https://doi.org/10.1016/S0065-2911(08)60143-5
- Wu, S. J., B. Liu, and X. B. Zhang. 2006. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl. Microbiol. Biotechnol. 72: 1210-1216 https://doi.org/10.1007/s00253-006-0416-4
- Zhang, H. L., B. Yao, Y. R. Wang, T. Z. Yuan, W. Z. Zhang, N. F. Wu, and Y. L. Fan. 2003. Expression of xylanase gene xyna from Streptomyces olivaceoviridis A1 in Escherichia coli and Pichia pastoris. Sheng Wu Gong Cheng Xue Bao 19: 41-45
Cited by
- Regulation of Xylanase Biosynthesis in Bacillus cereus BSA1 vol.167, pp.5, 2012, https://doi.org/10.1007/s12010-011-9523-5
- Characterization of EstB, a novel cold-active and organic solvent-tolerant esterase from marine microorganism Alcanivorax dieselolei B-5(T) vol.18, pp.2, 2014, https://doi.org/10.1007/s00792-013-0612-y
- Characterization of modular bifunctional processive endoglucanase Cel5 from Hahella chejuensis KCTC 2396 vol.98, pp.10, 2009, https://doi.org/10.1007/s00253-013-5446-0
- A high-molecular-weight, alkaline, and thermostable β-1,4-xylanase of a subseafloor Microcella alkaliphila vol.20, pp.4, 2009, https://doi.org/10.1007/s00792-016-0837-7
- A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic Bacillus strain exhibiting significant synergy with commercial Celluclast 1.5 L in pr vol.12, pp.None, 2009, https://doi.org/10.1186/s13068-019-1389-8
- Streptomyces as Potential Synthetic Polymer Degraders: A Systematic Review vol.8, pp.11, 2021, https://doi.org/10.3390/bioengineering8110154