초록
본 논문에서는 순환최소순위(RLR) L-필터의 수렴성을 해석하였다. RLR L-필터는 순서통계필터로서 입력의 크기순서에 따른 가중치를 필터계수로 한다. 또한 RLR L-필터는 비선형 적응 필터로서 필터계수의 갱신을 위하여 RLR 알고리즘을 이용한다. RLR 알고리즘은 로버스트 통계학의 순위추정에 기초한 비선형 적응 알고리즘이다. 본 논문에서는 가변적인 스텝 크기를 적용하여 평균 및 평균제곱의 견지에서 수렴성을 해석하였다. RLRL-필터는 잡음의 분포함수가 두꺼운 꼬리 분포인 임펄스 잡음에 가까울수록 메디안 필터의 형태로 적응하며 가우시안 잡음의 경우 평균 필터의 형태로 적응한다.
In this paper we analyze the convergence behavior of the recursive least rank (RLR) L-filter. The RLR L-filter is an order statistics filter, filter coefficients of which are the weights according to the order of magnitude of inputs. And RLR L-filter is a non-linear adaptive filter, that uses RLR algorithm for coefficient updating. The RLR algorithm is a non-linear adaptive algorithm based on rank estimates in Robust statistics. The mean and mean-squared convergence behavior of the RLR L-filter is examined with variable step-sizes. The RLR L-filter adapts the median filter type to the heavy-tailed distribution function of impulse noise, and adapts the average filter type to Gaussian noises.