Risk Assessment of Groundwater and Soil in Sasang Industrial Area in Busan Metropolitan City

부산광역시 사상공단지역의 지하수 및 토양 위해성 평가

  • Jeon, Hang-Tak (Division of Earth Environmental System, Pusan National University) ;
  • Hamm, Se-Yeong (Division of Earth Environmental System, Pusan National University) ;
  • Cheong, Jae-Yeol (Division of Earth Environmental System, Pusan National University) ;
  • Ryu, Sang-Min (Geology & Groundwater Dept., Hyundai Engineering Co., Ltd.) ;
  • Jang, Seong (Gyeongsangnam-Do office, Korea Rural Community Corporation) ;
  • Lee, Jeong-Hwan (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Soo-Hyung (Division of Earth Environmental System, Pusan National University)
  • 전항탁 (부산대학교 지구환경시스템학부) ;
  • 함세영 (부산대학교 지구환경시스템학부) ;
  • 정재열 (부산대학교 지구환경시스템학부) ;
  • 류상민 ((주)현대엔지니어링 지질지하수부) ;
  • 장성 (한국농어촌공사 경남지역본부) ;
  • 이정환 (부산대학교 지구환경시스템학부) ;
  • 이수형 (부산대학교 지구환경시스템학부)
  • Published : 2009.09.30

Abstract

The risk assessment of groundwater and soil in Sasang industrial complex in Busan Metropolitan City was carried out in order to estimate risks to human health and the environment. The carcinogenic risk (CR) of receptors to soil and air was not identified. However, the CRs for TCE and PCE were 6.7E-6 and 1.0E-5, respectively. Hazard quotient (HQ) and hazard index (HI) did not appear through air exposure pathways. Yet the HQ and HI of soil were 3.4E-5 and 5E-5, respectively, and lower than the critical value (1.0). On the contrary, HQ and HI with respect to groundwater were calculated as 0.7 (not hazardous) and 1.4 (hazardous). The constituent reduction factor (CRF) for TCE in the study area was determined as 2.5, and thus remediation work is demanded. As a result of sensitivity analysis for 18 exposure factors, eight exposure factors (life time of carcinogens, age, body weight, exposure duration, exposure frequency, dermal exposure frequency, water ingestion rate, and soil ingestion rate) varied with the variation of risk.

본 연구는 지하수, 토양, 대기의 노출경로에 따라서 부산광역시 사상공단의 지하수와 토양이 인체와 환경에 미치는 영향을 평가하였다. 토양과 대기의 노출경로에 따른 발암 위해는 나타나지 않았으나, 지하수에서는 TCE와 PCE의 발암 위해성이 각각의 기준 한계값인 1.0E-6과 1.0E-5에 대해서 각각 6.7E-6과 1.0E-5로 나타나 발암 위해가 있는 것으로 판단되었다. 대기에서는 비발암성 위해가 나타나지 않았다. 토양의 위해계수와 위해지수는 각각 3.4E-5와 5E-5로서 기준 한계값(1.0) 보다 낮게 나타났으나, 지하수의 위해계수와 위해지수는 각각 0.7 (위해성이 없음)과 1.4(위해성이 있음)로 나타났다. TCE의 최소성분감소비(CRF)는 2.5로서 TCE의 정화작업이 요구된다. 18개의 노출인자에 대한 민감도 분석 결과, 8개의 노출 인자(비 발암 물질에 대한 평균 수명, 발암 물질에 대한 평균 수명, 체중, 노출기간, 노출빈도, 피부노출빈도, 토양 섭취율, 물 섭취율)의 변화에 따라서 위해도가 변화하는 것으로 나타났다.

Keywords

References

  1. 국가통계포털 (2001) 성인 남자의 하루 섭취 음식량
  2. 김광임 (2002) 차세대 핵심환경기술개발사업 10개년 종합계획 수립, 한국환경정책.평가연구원, 1164p
  3. 류상민, 함세영, 정재열, 신현무, 오방일, 김민철 (2002) 유류 오염 부지에 대한 위해성평가, 한국지하수토양환경학회 추계학술발표회, 370-373
  4. 류혜림, 한준경, 남경필 (2007) 위해성에 근거한 정화목표 산정 및 복원전략 수립, 한국지하수토양환경학회지, 12(1), 73-86
  5. 사상구청 (2008) 사상구 통계연보
  6. 세창지질 (1990) 지질조사 보고서
  7. 안윤주, 이우미 (2007) 토양오염 위해성평가를 위한 국가별 노출인자 비교분석 및 국내 노출인자 연구, 한국지하수토양환경학회지, 13(1), 64-72
  8. 이주영, (2005) 한국인 성인남녀의 체표면적에 관한 연구, 서울대학교 대학원 박사학위논문
  9. 정승우, 안윤주 (2007) 토양위해성평가를 위한 합리적 토양 조사방안 연구, 한국지하수토양환경학회지, 12(1), 36-43
  10. 지식경제부 (2004) 한국인 인체치수조사사업 보고서
  11. 하나 엔지니어링 (2001) 양수시험 보고서
  12. 한정상, 한규상 (1999) 오염지하수.토양의 자연정화와 위해성 평가, 한림원, 585p
  13. 함세영, 김광성, 이정환, 정재열, 성익환, 장성 (2006) 부산시 사상공단지역의 지하수 수질특성, 자원환경지질, 39(6), 753-770
  14. 환경부 (2002) 토양측정망 운영
  15. 환경부 (2006) 토양오염의 위해성평가 지침서
  16. ASTM (1995) Risk-Based Corrective Action Applied at Petroleum Release Sites (E-1739-95), American Society for Testing Materials, PA, USA
  17. ASTM (2000) Standard Guide for Risk-Based Corrective Action(E 2081-00), American Society for Testing Materials, PA, USA
  18. Bryda, L.K. and Bryda, A.P. (1997) Recent developments in cleanup technologies, Remediation Journal, 7(2), 147-157 https://doi.org/10.1002/rem.3440070210
  19. Connor, J.A., Nevin J.P., Malander, M., Stanley, C., and DeVaull, G.E. (1995a) Tier2 Guidance Manual for Risk-Based Corrective Action, Groundwater Services, Inc., Houston, Texas
  20. Connor, J.A., Nevin, J.P., Fisher, R.T., Bowers, R.L., and Newwell, C.J. (1995b) RBCA Spreadsheet System and Modeling Guidelines Version 1.0, Groundwater Services, Inc., Houston, Texas
  21. Critto, A., Nadal, N., Carlon, C., and Marcomini, A., (2005) A method for risk assessment for three contaminated sites in northern Italy, Annali di Chimica, 95, 833-844 https://doi.org/10.1002/adic.200590096
  22. Environment Agency (2005) The contaminated land exposure assessment model (CLEA): Technical basis and algorithms, United Kingdom
  23. Hamm, S.-Y., Ryu, S.M., Cheong, J.-Y., and Woo, Y.-J. (2003) Groundwater contamination and risk assessment of industrial complex in Busan Metropolitan City, Korea, EGS-AGU-EUG Joint Assembly, Nice, France, EAE03-A-08744
  24. Johnson, P.C., DeVaull, G.E., Ettinger, R.A., MacDonald, R.L., Stanley, C., Westby, T., and Connor, J. (1993) Risk-Based Corrective Action: Tier 1 Guidance Manual, Shell Oil Company, Houston, TX
  25. Johnson, P.C. and Ettinger, R.A. (1991) Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Environmental Science & Technology, 25(8), 1445-1452 https://doi.org/10.1021/es00020a013
  26. Kolluru, R.V., Bartell, S.M., Pitblado, R.M., and Stricoff, R.S. (1996) Risk Assessment and Management Handbook, McGraw-Hill
  27. Kwiatkowski, R.E. (1998) The role of risk assessment and risk management in environmental assessment, Environmetrics, 9, 587-598 https://doi.org/10.1002/(SICI)1099-095X(199809/10)9:5<587::AID-ENV325>3.0.CO;2-H
  28. Lagoy, P.K. (1999) Risk assessment in remediation: Accurately accounting for uncertainty, Remediation Journal, 10(1), 83-96 https://doi.org/10.1002/rem.3440100107
  29. Lim, H.-S., Lee, J.-S., Chon, H.-T., and Sager, M. (2008) Haevy metal contamination and health risk assrssment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea, Journal of Geochemical Exploration, 96(2-3), 223-230 https://doi.org/10.1016/j.gexplo.2007.04.008
  30. McKone, T.E. and Enoch, K.G. (2002) CalTOX, A Multimedia Total Exposure Model Spreadsheet User’s Guide, Version 4.0 (Beta), Ernest Orlando Lawrence Berkeley National Laboratory, LBNL-47399, 37p
  31. Odencrantz, J.E. and Duran D. (1997) Integration of RBCA frameworks and remediation technologies, The Journal of Environmental Cleanup Costs, Technologies & Techniques, Summer, 97-107
  32. Odermatt, J.R. (1998) Streamlining implementation of risk-based corrective action (RBCA) at California LUFT sites, Ground Water Monitering & Remediation, 18(1), 71-73 https://doi.org/10.1111/j.1745-6592.1998.tb00602.x
  33. Pepper, C.B., Block, N. and Baladi S. (2003) Deciding how clean is clean enough under the Texas law of risk based corrective action, Federal Facilities Environmental Journal, 14(2), 57-76 https://doi.org/10.1002/ffej.10073
  34. RIVM (2001) Evaluation of model concepts on human exposure; Proposals for updating the most relevant exposure routes of CSOIL (Report 711701 022)
  35. RIVM (2004) Update of risk assessment models for the indirect human exposure (Report 601516011)
  36. Sheahan, J.W., Ball, R.O., and Hahn, M.W. (1998) RBCA closure at DNAPL sites, Ground Water Monitoring & Remediation, 18(3), 78-81 https://doi.org/10.1111/j.1745-6592.1998.tb00730.x
  37. Strenge, D.L. and Smith, M.A. (2006) Multimedia environmental pollutant assessment system (MEPAS): Human health impact module description, Pacific Northwest National Laboratory, PNNL-16164, 19p
  38. Stull, R.B. (1988) An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers
  39. U.S. AFCEE (1998) Handbook for Remediation of Petroleum Contaminated Sites (A Risk-Based Strategy), US Air Force Center for Environmental Excellence, TX, USA
  40. U.S. EPA (1995) How to Evaluate Alternative Cleanup Technologies for Underground Storoge Tank Sites, EPA 510-8-95-005
  41. U.S. EPA (1996b) Soil Screening Guidance: User’s Manual, Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C., USA
  42. Wang, J.L. and Yang, Y.S. (2008) An approach to catchment-scale groundwater nitrate risk assessment from diffuse agricultural sources: a case study in the Upper Bann, Northern Ireland, Hydrological Processes, 22, 4274-4286 https://doi.org/10.1002/hyp.7036