Preparation and Characterization of Water-Dispersible Silver Nanoparticles Stabilized by PEO-Conjugated Pro-Drugs

  • 발행 : 2009.10.25

초록

$\omega$-Anhydride-functionalized poly(ethylene oxide) (PEO) obtained from chain-end functionalization and anionic ring-opening polymerization of ethylene oxide using n-butyllithium with potassium t-butoxide in the presence of dimethylsulfoxide (DMSO) was found to be an efficient material for the preparation of water-soluble, polymeric pro-drugs. The reaction of $\omega$-anhydride-functionalized PEO with sulfonamide or with vancomycin provided an efficient method to produce corresponding, water-soluble, PEO-conjugated sulfonamide or PEO-conjugated, vancomycin pro-drugs. These were used successfully to prepare water-dispersible, silver nanoparticles. In this study, the particle sizes were in the range of $5{\sim}40$ nm. The resulting products were characterized by $^1H$ NMR spectroscopy, transmission electron microscopy, electron and X-ray diffraction, size exclusion chromatography, and UV/Visible spectroscopy.

키워드

참고문헌

  1. C. B. Murray, S. Sun, H. Doyle, and T. Betley, Mater. Res. Soc. Bull., 26, 985 (2001) https://doi.org/10.1557/mrs2001.254
  2. B. Wiley, Y. Sun, J. Chen, H. Cang, Z.-Y. Li, X. Li, and Y. Xia, Mater. Res. Soc. Bull., 30, 356 (2005) https://doi.org/10.1557/mrs2005.98
  3. Y. Sun and Y. Xia, Science, 298, 2176 (2002) https://doi.org/10.1126/science.1077229
  4. J. Wang, G. Liu, and A. Merkovi, J. Am. Chem. Soc., 125, 3214 (2003) https://doi.org/10.1021/ja029668z
  5. R. Bau, J. Zhang, E. J. Beckman, M. Virji, W. A. Pasculle, and A. Wells, Biomaterials, 27, 4304 (2006) https://doi.org/10.1016/j.biomaterials.2006.03.038
  6. A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Nevecna, and R. Zboril, J. Phys. Chem. B, 110, 16248 (2006) https://doi.org/10.1021/jp063826h
  7. R. W.-Y. Sun, R. Chen, N. P.-Y. Chung, C.-M. Ho, C.-L. S. Lin, and C.-M. Che, Chem. Commun., 5059 (2005)
  8. L. Lu, A. Kobayashi, K. Tawa, and Y. Ozaki, Chem. Mater., 18, 4894 (2006) https://doi.org/10.1021/cm0615875
  9. X. Zou and S. Dong, J. Phys. Chem. B, 110, 21545 (2006) https://doi.org/10.1021/jp063630h
  10. E. V. Schevchenko, D. V. Talapin, H. Schnablegger, A. Kornowski, O. Festin, P. Svedlindh, M. Haase, and H. Weller, J. m. Chem. Soc., 125, 9090 (2003) https://doi.org/10.1021/ja029937l
  11. R. Narayanan and M. A. El-Sayed, J. Am. Chem. Soc., 125, 8340 (2003) https://doi.org/10.1021/ja035044x
  12. B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, J. Phys. Chem. B, 110, 15666 (2006) https://doi.org/10.1021/jp0608628
  13. B. J. Wiley, Y. Sun, B. Mayers, and Y. Xia, Chem. Eur. J., 11,454 (2005) https://doi.org/10.1002/chem.200400927
  14. A. Gupta and S. Silver, Nature Biotechnol., 16, 888 (1998) https://doi.org/10.1038/nbt1098-888
  15. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman, Nanotechnology, 16, 2346 (2005) https://doi.org/10.1088/0957-4484/16/10/059
  16. M. Moskovits and J. S. Suh, J. Am. Chem. Soc., 107, 6826 (1985) https://doi.org/10.1021/ja00310a014
  17. R. P. Cheung and J. T. DiPiro, Pharmacotherapy, 6, 153 (1986) https://doi.org/10.1002/j.1875-9114.1986.tb03471.x
  18. H. Ringsdorf, J. Polym. Sci. Symp., 51, 135 (1975)
  19. C. T. Supuran, A. Casini, and A. Scozzafava, Med. Res. Rev., 23, 535 (2003) https://doi.org/10.1002/med.10047
  20. M. Morton and L. J. Fetters, Rubber Chem. Technol., 48, 359 (1975) https://doi.org/10.5254/1.3547458
  21. J. Kim, S. Choi, K. M. Kim, C. H. Lee, H. S. Park, S. S. Hwang, S. M. Hong, S. Kwak, and H.-O. Yoo, Macromol. Symp., 245/246, 565 (2006) https://doi.org/10.1002/masy.200651381
  22. H. Gilman and F. K. Cartledge, J. Organomet. Chem., 2, 447 (1964) https://doi.org/10.1016/S0022-328X(00)83259-3
  23. J. Kim, S. Choi, K. M. Kim, D. H. Go, H. J. Jeon, J. Lee, H. S. Park, C. H. Lee, and H. M. Park, Macromol. Res., 15, 31 (2007) https://doi.org/10.1007/BF03218749
  24. J. Kim, S. Choi, K. M. Kim, D. H. Go, H. J. Jeon, J. Lee, H. S. Park, C. H. Lee, and H. M. Park, Macromol. Res., 15, 31 (2007) https://doi.org/10.1007/BF03218749
  25. B. Wiley, Y. Sun, B. Mayers, and Y. Xia, Chem. Eur. J., 11, 454 (2005) https://doi.org/10.1002/chem.200400927
  26. D. E. Sands, Introduction to Crystallography, Dover, New York, 1993, p 51
  27. M. S. Lisowski, Q. Liu, J. Cho, J. Runt, F. Yeh, and B. S. Hsiao, Macromolecules, 33, 4842 (2000) https://doi.org/10.1021/ma000207c
  28. (a) S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, S. Jana, S. Pande, T. Vo-Dinh, H. Jiang, and T. Pal, J. Phys. Chem. B, 110, 13436 (2006). (b) S. He, J. Yao, S. Xie, H. Gao, and S. Pang, J. Phys. D: Appl. Phys., 34, 3425 (2001). (c) Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, J. Phys. Chem. B, 108, 12877 (2004). (d) H. Xia, Y. Zhang, S. Sun, and Y. Fang, Colloid Polym. Sci., 285, 1655 (2007) https://doi.org/10.1021/jp062119l
  29. (b) S. He, J. Yao, S. Xie, H. Gao, and S. Pang, J. Phys. D: Appl. Phys., 34, 3425 (2001) https://doi.org/10.1088/0022-3727/34/24/301
  30. (c) Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, J. M. Zhang, and D. Y. Shen, J. Phys. Chem. B, 108, 12877 (2004) https://doi.org/10.1021/jp037116c
  31. (d) H. Xia, Y. Zhang, S. Sun, and Y. Fang, Colloid Polym. Sci., 285, 1655 (2007) https://doi.org/10.1007/s00396-007-1737-2