Facile Preparation of Biodegradable Glycol Chitosan Hydrogels Using Divinyladipate as a Crosslinker

  • Kim, Beob-Soo (Departments of Chemical Engineering and Bionanotechnology, Hanyang University) ;
  • Yeo, Tae-Yun (Departments of Chemical Engineering and Bionanotechnology, Hanyang University) ;
  • Yun, Yeon-Hee (Departments of Chemical Engineering and Bionanotechnology, Hanyang University) ;
  • Lee, Byung-Kook (Departments of Chemical Engineering and Bionanotechnology, Hanyang University) ;
  • Cho, Yong-Woo (Departments of Chemical Engineering and Bionanotechnology, Hanyang University) ;
  • Han, Sung-Soo (School of Textile, Yeungnam University)
  • Published : 2009.10.25

Abstract

Biodegradable, pH-sensitive, glycol chitosan (GC) hydrogels were prepared using divinyl adipate (DVA) as a crosslinker and acetic acid as a catalyst. DVA has highly reactive double vinyl ester groups and GC contains a high density of hydroxyl groups, with two in every glucosamine unit. The transesterification reaction between vinyl esters and hydroxyl groups produced crosslinked GC hydrogels. The initial crosslinking reaction was monitored by measuring the viscosity of the reaction mixture. When DVA was added to the GC solution and heated to $50^{\circ}C$, the viscosity of the GC solution gradually increased, implying a crosslinking reaction and hydrogel formation. A new peak from the ester group was observed in the FTIR spectra of the GC hydrogels, confirming the crosslinking reaction. The synthesized GC hydrogel showed pH-dependent water absorbency, mainly due to the presence of amine groups ($-NH_2$) at the C-2 position of the glucosamine unit of GC. The water absorbency greatly increased at acidic pH and slightly decreased at alkaline pH. The GC hydrogel gradually degraded in $37^{\circ}C$ water due to hydrolysis of the ester bonds, which were intermolecular crosslinking sites. A red dye, 5-carboxyltetramethyl-rhodamine (CTMR), was entrapped in the GC hydrogels as a model compound. CTMR was released from GC hydrogels in two steps: an initial burst release mainly due to desorption and diffusion, and a second sustained release possibly due to gradual degradation.

Keywords

References

  1. A. S. Hoffman, Adv. Drug Deliv. Rev., 43, 3 (2002)
  2. K. Y. Lee and D. J. Mooney, Chem. Rev., 101, 1869 (2001) https://doi.org/10.1021/cr000108x
  3. Y. Qiu and K. Park, Adv. Drug Deliv. Rev., 53, 321 (2001) https://doi.org/10.1016/S0169-409X(01)00203-4
  4. A. Kikuchi and T. Okano, Adv. Drug Deliv. Rev., 54, 53 (2002) https://doi.org/10.1016/S0169-409X(01)00243-5
  5. J. R. Moon and J.-H. Kim, Macromol. Res., 16, 489 (2008) https://doi.org/10.1007/BF03218549
  6. S. B. Rao and C. P. Sharma, J. Biomed. Mater. Res., 34, 21 (1997) https://doi.org/10.1002/(SICI)1097-4636(199701)34:1<21::AID-JBM4>3.0.CO;2-P
  7. C. Shi, Y. Zhu, X. Ran, M. Wang, Y. Su, and T. Cheng, J. Surg. Res., 133, 185 (2006) https://doi.org/10.1016/j.jss.2005.12.013
  8. Y. W. Cho, Y. N. Cho, S. H. Chung, G. Yoo, and S. W. Ko, Biomaterials, 20, 2139 (1999) https://doi.org/10.1016/S0142-9612(99)00116-7
  9. J. Berger, M. Reist, J. M. Mayer, O. Felt, and R. Gurny, Eur. J. Pharm. Biopharm., 57, 35 (2004) https://doi.org/10.1016/S0939-6411(03)00160-7
  10. K. M. Park, Y. K. Joung, K. D. Park, S. Y. Lee, and M. C. Lee, Macromol. Res., 16, 517 (2008) https://doi.org/10.1007/BF03218553
  11. K. Jeong, W. Lee, J. Cha, C. R. Park, Y. W. Cho, and I. C. Kwon, Macromol. Res., 16, 57 (2008) https://doi.org/10.1007/BF03218961
  12. J. Berger, M. Reist, O. Felt, N. A. Peppas, and R. Gurny, Eur. J. Pharm. Biopharm., 57, 19 (2004) https://doi.org/10.1016/S0939-6411(03)00161-9
  13. H. D. Han, D. E. Nam, D. H. Seo, T. W. Kim, and B. C. Shin, Macromol. Res., 12, 507 (2004) https://doi.org/10.1007/BF03218435
  14. H.-S. Kang, S.-H. Park, Y.-G. Lee, and T.-I. Son, J. Appl. Polym. Sci., 103, 386 (2006) https://doi.org/10.1002/app.24623
  15. M. Y. Abdelaal, E. A. Abdel-Razik, E. M. Abdel-Bary, and I. M. EI-Sherbiny, J. Appl. Polym. Sci., 103, 2864 (2007) https://doi.org/10.1002/app.25154
  16. L. Ferreira, M. H. Gil, A. M. S. Cabrita, and J. S. Dordick, Biomaterials, 26, 4707 (2005) https://doi.org/10.1016/j.biomaterials.2004.11.051
  17. Y. L. Khmelnitsky, C. Bludde, J. M. Arnold, A. Usyatinsky, D. S. Clark, and J. S. Dordick, J. Am. Chem. Soc., 119, 11554 (1997) https://doi.org/10.1021/ja973103z
  18. M. Kitagawa, T. Tokiwa, H. Fan, T. Raku, and Y. Tokiwa, Biotechnol. Lett., 22, 879 (2000) https://doi.org/10.1023/A:1005631917231
  19. A. K. Chaudhary, E. J. Beckman, and A. J. Russell, Biotechnol. Bioeng., 55, 227 (1997) https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<227::AID-BIT23>3.0.CO;2-H
  20. L. Ferreira and M. H. Gil, Chem. Mater., 14, 4009 (2002) https://doi.org/10.1021/cm020393w
  21. I. M. El-Sherbiny, E. M. Abdel-Bary, and D. R. K. Harding, J. Appl. Polym. Sci., 102, 977 (2006) https://doi.org/10.1002/app.23989
  22. K. M. Zia, M. Barikani, I. A. Bhatti, M. Zuber, and H. N. Bhatti, J. Appl. Polym. Sci., 110, 769 (2008) https://doi.org/10.1002/app.28533
  23. X. Hu and C. Gao, J. Appl. Polym. Sci., 110, 1059 (2008) https://doi.org/10.1002/app.28704