DOI QR코드

DOI QR Code

Mechanical and Electrical Properties of Submicrocrystalline Cu-3%Ag Alloy

초미세 결정립 Cu-3%Ag 합금의 기계적/전기적 특성

  • 고영건 (영남대학교 신소재공학부) ;
  • 이철원 (한양대학교 금속재료공학과) ;
  • 남궁승 (한양대학교 금속재료공학과) ;
  • 이동헌 (한양대학교 금속재료공학과) ;
  • 신동혁 (한양대학교 금속재료공학과)
  • Published : 2009.10.01

Abstract

The present work demonstrates the mechanical and electrical responses of submicrocrystalline Cu-3%Ag alloy as a function of strain imposed by equal channel angular pressing(ECAP). From transmission electron microscope observation, the resulting microstructures of Cu-3%Ag alloy deformed by ECAP for 8-pass or more consist of reasonably fine, equiaxed grains without having a strong preferred orientation, suggesting that microstructure evolution is slower than that of pure-Al and its alloys owing to low stacking fault energy. The results of room temperature tension tests reveal that, as the amount of applied strain increases, the tensile strength of submicrocrystalline Cu-3%Ag alloy increases whereas losing both the ductility and the electrical conductivity. Such phenomenon can be explained based on microstructure featured by the non-equilibrium grain boundaries.

Keywords

References

  1. J. Lin, L. Meng, 2008, Effect of Aging Treatment on Microstructure and Mechanical Properties of CuAg Alloys, J. Alloys Compd., Vol. 454, No. 1-2, pp.150-155 https://doi.org/10.1016/j.jallcom.2006.12.073
  2. J. B. Liu, L. Zhang, L. Meng, 2007, Relationships between Mechanical Strength and Electrical Conductivity for Cu-Ag Filamentary Microcomposites, Appl. Phys. A., Vol. 86, No. 4, pp. 529-532 https://doi.org/10.1007/s00339-006-3807-6
  3. J. B Liu, L. Meng, Y. W. Zeng, 2006, Microstructure Evolution and Properties of Cu-Ag Microcomposites with Different Ag Content, Mater. Sci. Eng. A., Vols. 435-436, pp. 237-244 https://doi.org/10.1016/j.msea.2006.07.125
  4. S. I. Hong, P. H. Kim, Y. C. Choi, 2004, High Strain Rate Superplasticity of Deformation Processed CuAg Filamentary Composites, Scr. Mater., Vol. 51, No. 2, pp. 95-99 https://doi.org/10.1016/j.scriptamat.2004.04.004
  5. T. Sakai, Y. Saito, T. Kanzaki, N. Tamaki, N. Tsuji, 2006, Grain Refinement of Cu-Co-P Alloy by Accumulative Roll Bonding, J. JCBRA., Vol. 40, No. 1, pp. 213-217
  6. R. Z. Valiev, N. A. Krasilnikov, N. K. Tsenev, 1991, Plastic Deformation of Alloys with SubmicronGrained Structure, Mater. Sci. Eng. A., Vol. 137, pp. 35-40 https://doi.org/10.1016/0921-5093(91)90316-F
  7. R. Z. Valiev, T. G. Langdon, 2006, Principles of Equal-Channel Angular Pressing as A Processing Tool for Grain Refinement, Prog. Mater. Sci., Vol. 51, No. 7, pp. 881-981 https://doi.org/10.1016/j.pmatsci.2006.02.003
  8. K. T. Park, Y. S. Kim, J. G. Lee, D. H. Shin, 2000, Thermal Stability and Mechanical Properties of Ultra Fine Grained Low Carbon Steel, Mater. Sci. Eng. A., Vol. 293, No. 1-2, pp. 165-172 https://doi.org/10.1016/S0921-5093(00)01220-X
  9. D. H. Shin, Y. S. Kim, E. J. Lavemia, 2001, Formation of Fine Cementite Precipitates by Static Annealing of Equal-Channel Angular Pressed Low-Carbon Steels, Acta Mater., Vol. 49, No. 13, pp. 2387-2393 https://doi.org/10.1016/S1359-6454(01)00165-3
  10. R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, 2000, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., Vol. 45, No. 2, pp. 103-189 https://doi.org/10.1016/S0079-6425(99)00007-9
  11. C. Z. Xu, Q. J. Wang, M. S. Zheng, J. W. Zhu, J. D. Li, M. Q. Huang, Q. M Jia, Z. Z. Du, 2007, Microstructure and Properties of Ultra-Fine Grain Cu-Cr Alloy Prepared by Equal-Channel Angular Pressing, Mater. Sci. Eng. A., Vol. 459, No. 1-2, pp. 303-308 https://doi.org/10.1016/j.msea.2007.01.105
  12. Y. Sakai, K. Inoue, H. Maeda, 1995, New High Strength, High-Conductivity Cu-Ag Alloy Sheets, Acta Mater., Vol. 43, No.4, pp. 1517-1522 https://doi.org/10.1016/0956-7151(94)00376-S
  13. Y. G. Ko, D. H. Shin, K. T. Park, C. S. Lee, 2007, Superplastic Deformation of Ultra-Fine Grained 5083 Al Alloy Using Load-Relaxation Tests, Mater. Sci. Eng. A., Vol. 449-451, pp. 756-760 https://doi.org/10.1016/j.msea.2006.02.452
  14. K. Neishi, Z. Horita, T. G. Langdon, 2002, Grain Refinement of Pure Nickel Using Equal-Channel Angular Pressing, Mater. Sci. Eng. A., Vol. 325, No. 1-2, pp. 54-58 https://doi.org/10.1016/S0921-5093(01)01404-6
  15. O. Engler, 2000, Deformation and Texture of CopperManganese Alloys, Acta Mater., Vol. 48, No. 20, pp. 4827-484 https://doi.org/10.1016/S1359-6454(00)00272-X
  16. P. C. J. Gallagher, 1970, The Influence of Alloying, Temperature, and Related Effects on the Stacking Fault Energy, Metall. Mater. Trans. B, Vol. 1, pp. 2429-2461 https://doi.org/10.1007/BF03038370
  17. Y. Sakai, K. Inoue, H. Maeda, 1995, New High Strength, High-Conductivity Cu-Ag Alloy Sheets, Acta Mater., Vol. 43, No.4, pp. 1517-1522 https://doi.org/10.1016/0956-7151(94)00376-S