DOI QR코드

DOI QR Code

The Effects of Restricted Trunk Motion on the Performance of Maximum Vertical Jump

몸통 운동의 제약이 최대 수직점프의 수행에 미치는 영향

  • Published : 2009.03.30

Abstract

The purpose of this study was to identify effects of restricted trunk motion on the performances of the maximum vertical jump. Ten healthy males performed normal countermovement jump(NJ) and control type of countermovement jump(CJ), in which subjects were required to restrict trunk motion as much as possible. The results showed 10% decreases of jumping height in CJ compared with NJ, which is primarily due to vertical velocity at take off. NJ with trunk motion produced significantly higher GRF than RJ, especially at the early part of propulsive phase, which resulted from increased moments on hip joint. And these were considered the main factors of performance enhancement in NJ. There were no significant differences in the mechanical outputs on knee and ankle joint between NJ and RJ. With trunk motion restricted, knee joint alternatively played a main role for propulsion, which is contrary on the normal jump that hip joint was highest contributor. And restricted trunk motion resulted in the changes of coordination pattern, knee-hip extension timing compared with normal proximal-distal sequence. In conclusion these results suggest that trunk motion is effective strategy for increasing performance of vertical jumping.

본 연구에서는 수직점프시 몸통운동의 제약이 수직점프의 수행에 미치는 영향을 알아보기 위해 10명의 성인 남성을 대상으로 몸통을 자유롭게 사용한 일반적인 형태와 몸통동작을 제한한 형태의 수직점프를 비교, 분석하였다. 분석 결과 몸통동작을 제한한 경우 비 제약점프에 비해 10% 정도의 수행 손실이 있었는데, 이는 이지 순간의 중심 높이보다는 이 지속도의 차이에 의해 발생하였다. 몸통의 운동은 엉덩관절의 모멘트 파워를 증가시켜 추진의 초기 시점부터 지면반력의 증가에 기여하였는데 이러한 요인이 수행력 증가의 주요한 요인으로 작용하였다. 반면 몸통운동이 제한된 점프에서는 엉덩관절에서의 역학적 출력의 감소를 보상하는 측면에서 무릎관절의 역할이 증가하였으나 충분치 못하였다. 또한 몸통동작의 제한으로 엉덩관절 무릎관절 발목관절의 순차적인 신전패턴과는 상이하게 추진시점 직후 엉덩관절과 무릎관절이 동시에 신전하는 형태의 점프가 이루어져 협응패턴의 변화가 나타났다. 결국 본 연구의 결과 몸통의 적절한 사용은 수직점프의 수행 향상에 효과적으로 기여하는 것으로 나타났다.

Keywords

References

  1. 이행섭, 주명덕(2006). 고등학생의 성별에 따른 수직점프 유형별 운동역학적 분석. 한국운동역학회지, 16(4), 153-164.
  2. Anderson, F. C., & Pandy, M. G.(1993). Storage and utilization of elastic stram energy during jumping. Journal of Biomechanics, 26(12), 1413-1427. https://doi.org/10.1016/0021-9290(93)90092-S
  3. Aragon-Vargas, L., & Gross, M.(1997). Kinesiological factors in vertical jump performance: Differences among individuals. Journal of Applied Biomechanics, 13(1), 24-44.
  4. Bell, A. L., Pedersen, D. R., & Brand, R. A.(1990). A comparison of the accuracy of several hip center location prediction methods. Journal of Biomechanics, 23(6), 617-621. https://doi.org/10.1016/0021-9290(90)90054-7
  5. Blattner, S., & Noble, L.(1979) Relative effects of isokinetic and plyometric training on vertical jumping performance. Research Quarterly, 50(4), 583-588.
  6. Bobbert, M. F., & van Ingen Schenau, G. J.(1988). Coordination in vertical jumping. Journal of Biomechanics, 21(3), 249-262. https://doi.org/10.1016/0021-9290(88)90175-3
  7. Bobbert, M. F., Karin G. M., Gerritsen, M., Liljens, C. A., & Van Soest, A. J.(1996). Why is countermovement jump height greater than squat jump height? Medicine and Science in Sports and Exercise, 28, 1402-1412. https://doi.org/10.1097/00005768-199611000-00009
  8. Bosco, C., Viitasalo, J. T., Komi, P. V., & Luhtanen, P.(1982). Combined effect of elastic energy and myoelectrical potentiation during stretch-shortening cycle exercise. Acta Physiologica Scandinavica, 114, 557-565. https://doi.org/10.1111/j.1748-1716.1982.tb07024.x
  9. Dempster, W. T.(1955). Space requirements of the seated operator. WADC technical report, Wright-Pattern Air force Base, OH, 55-159.
  10. Feltner, M. E., Bishop, E. J., & Perez, C. M.(2004). Segmental and Kinetic Contributions in Vertical Jumps Performed With and Without an Arm Swing. Research Quarterly for Exercise and Sport, 75(3), 216-230. https://doi.org/10.1080/02701367.2004.10609155
  11. Feltner, M. E., Fraschetti, D. J., & Crisp, R. J.(1999). Upper extremity augmentation of lower extremity kinetics during countermovement vertical jumps. Journal of Sports Sciences, 17(6), 449-466. https://doi.org/10.1080/026404199365768
  12. Fukashiro, S., & Komi, P. V.(1987). Joint moment and mechanical power flow of the lower limb during vertical jump. International Journal of Sports Medicine, 8 Suppl, 15-21. https://doi.org/10.1055/s-2008-1025699
  13. Genuario, S. E., & Dolgener, E. A.(1980). The relationship of isokinetic torque at two speeds to the vertical jump. Research Quarterly for Exercise and Sport, 51(4), 593-598. https://doi.org/10.1080/02701367.1980.10609319
  14. Grood, E. S., & Suntay, W. J.(1983). A joint coordinate system for the clinical description of three-dimensional motion: Application to the Knee. Journal of Biomechanical Engineering, 105, 136-144. https://doi.org/10.1115/1.3138397
  15. Harman, E. A., Rosenstein, M. T., Frykman, P. N., & Rosenstein, R. M.(1990). The effects of arms and countermovement on vertical jumping. Medicine and Science in Sports and Exercise, 22(6), 825-833. https://doi.org/10.1249/00005768-199012000-00015
  16. Hara, M., Shibayama, A., Takeshita, D., & Fukashiro, S.(2006). The effect of arm swing on lower extremities in vertical jumping. Journal of Biomechanics, 39(13), 2503-2511. https://doi.org/10.1016/j.jbiomech.2005.07.030
  17. Hawkins, D., & Hull, M L.(1990). A method for determining lower extremity muscle-tendon lengths during flexion/extension movements. Journal of Biomechanics, 23(5), 487-494. https://doi.org/10.1016/0021-9290(90)90304-L
  18. Kollias, I., Hatzitaki, V., Papaiakovou, G., & Giatsis, G.(2000). Using principal components analysis to identify individual differences in vertical jump performance. Research Quarterly for Exercise and Sport, 72(1), 63-67.
  19. Lees, A., Vanrenterghem, J., & De Clercq, D.(2006). The energetics and benefit of an arm swing in submaximal and maximal vertical jump performance. Journal of Sports Sciences, 24(1), 51 - 57. https://doi.org/10.1080/02640410400023217
  20. Lees, A., Vanrenterghem, J., & De Clercq, D.(2004). The maximal and submaximal vertical jump: implications for strength and conditioning. Journal of Strength and Conditioning Research, 18(4), 787-791. https://doi.org/10.1519/14093.1
  21. Linthorne, N. P.(2001) Analysis of standing vertical jumps using a force platform. American Journal of Physics, 69(11), 1198-1204. https://doi.org/10.1119/1.1397460
  22. Pandy, M. G., & Zajac, F. E.(1991). Optimal muscular coordination strategies for jumping. Journal of Biomechanics, 24(1), 1-10. https://doi.org/10.1016/0021-9290(91)90321-D
  23. Tomika, M., Owings, T. M., & Grabiner, M. D.(2001). Lower extremity strength and coordination are independent contributors to maximum vertical jump height. Journal of Applied Biomechanics, 17, 181-187.
  24. Vanrenterghem, J., Lees, A., & Clercq, D. D.(2008). Effect of forward trunk inclination on joint power output in vertical jumping. Journal of Strength and Conditioning Research, 22(3), 708-714. https://doi.org/10.1519/JSC.0b013e3181636c6c

Cited by

  1. The Effects of Landing Height on the Lower Extremity Injury Mechanism during a Counter Movement Jump vol.22, pp.1, 2012, https://doi.org/10.5103/KJSB.2012.22.1.025
  2. Comparison of Biomechanical Characteristics of Rowing Performance between Elite and Non-Elite Scull Rowers: A Pilot Study vol.26, pp.1, 2016, https://doi.org/10.5103/KJSB.2016.26.1.21