DOI QR코드

DOI QR Code

REVIEW OF COMPUTATIONAL MODELS FOR FOOTWEAR DESIGN AND EVALUATION

신발 설계 및 평가를 위한 컴퓨터 모델

  • Published : 2009.03.30

Abstract

Existing footwear biomechanics studies rely on simplified kinetics and kinematics, plantar pressure and muscle electromyography measurements. Because of the complexity of foot-shoe interface and individualized subject response with different footwear, consistent results regarding the biomechanical performance of footwear or footwear components can yet be achieved. The computational approach can be an efficient and economic alternative to study the biomechanical interactions of foot and footwear. Continuous advancement in numerical techniques as well as computer technology has made the finite element method a versatile and successful tool for biomechanics researchdue to its capability of modelling irregular geometrical structures, complex material properties, and complicated loading and boundary conditions. Finite element analysis offers asystematic and economic alternative in search of more in-depth biomechanical information such as the internal stress and strain distributions of foot and footwear structures. In this paper, the current establishments and applications of the computational approach for footwear design and evaluation are reviewed.

Keywords

References

  1. Actis, R. L., Ventura, L. B., Lott, D. J., Smith, K. E., Commean, P. K., Hastings, M. K., & Mueller, M. J.(2008). Multi-plug insole design to reduce peak plantar pressure on the diabetic foot during walking. Medical & Biological Engineering & Computing, 46, 363-371. https://doi.org/10.1007/s11517-008-0311-5
  2. Actis, R. L., Ventura, L. B., Smith, K. E., Commean, P. K., Lott, D. J., PiIgram, T. K., & Mueller, M. J.(2006). Numerical simulation of the plantar pressure distribution in the diabetic foot during the push-off stance. Medical & Biological Engineering & Computing, 44, 653-663. https://doi.org/10.1007/s11517-006-0078-5
  3. Alemany, S., Garcia, I., Alcantara, E., Gonzalez, J. C., Castillo, L.(2003). Integration of plantar pressure measurements in a finite element model for the optimization of shankpiece design for high-heeled shoes. Proceedings of the 6th Symposium on Footwear Biomechanics. Queenstown, New Zealand.
  4. Barani, Z., Haghpanahi, M., Katoozian, H.(2005). Three dimensional stress analysis of diabetic insole: a finite element approach. Technology and Health Care, 13, 185-192.
  5. Baroud, G., Goerke, U. J., Guenther, H., Stefanyshyn, D. J., Miller, J. E., & Nigg, B. M. (1999). A non-linear hyperelastic finite element model of energy return enhancement in sport surfaces and shoes. Proceedings of the 4th Symposium on Footwear Biomechanics. Canmore, Canada.
  6. Budhabhatti, S. P., Erdemir, A., Petre, M., Sferra, J., Danley, B., & Cavanagh, P. R.(2007). Finite element modeling of the first ray of the foot: a tool for the design of interventions. Journal of Biomechanical Engineering, 129, 750-756. https://doi.org/10.1115/1.2768108
  7. Chen, W. P., Ju, C. W., & Tang, F. T.(2003). Effects of total contact insoles on the plantar stress redistribution: a finite element analysis. Clinical Biomechanics, 18, 517-24.
  8. Cheung, J. T. & Zhang, M.(2005). A 3-dimensional finite element model of the human foot and ankle for insole design. Archives of Physical Medicine and Rehabilitation, 86, 353-358. https://doi.org/10.1016/j.apmr.2004.03.031
  9. Cheung, J. T. & Zhang, M.(2008). Parametric design of pressure-relieving foot orthosis using statistics-based finite element method. Medical Engineering & Physics, 30, 269-277. https://doi.org/10.1016/j.medengphy.2007.05.002
  10. Cheung, J. T. M., Bouchet, B., Zhang, M., & Nigg, B. M.(2007). A 3D finite element simulation of foot-shoe interface. Proceedings of the 8th Symposium on Footwear Biomechanics. Taipei, Taiwan, 45-46.
  11. Chu, T. M. & Reddy, N. P.(1995). Stress distribution in the ankle-foot orthosis used to correct pathological gait. Journal of Rehabilitation Research and Development, 32, 349-360.
  12. Chu, T. M., Reddy, N. P., & Padovan, J.(1995). Three-dimensional finite element stress analysis of the polypropylene, ankle-foot orthosis: static analysis. Medical Engineering & Physics, 17, 372-379. https://doi.org/10.1016/1350-4533(95)97317-I
  13. Erdemir, A., Saucerman, J. J., Lemmon, D., Loppnow, B., Turso, B., Ulbrecht, J. S., & Cavanagh, P. R.(2005). Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models. Journal of Biomechanics, 38, 1798-1806. https://doi.org/10.1016/j.jbiomech.2004.09.009
  14. Even-Tzur, N., Weisz, K., Hirsch-Falk, Y., & Gefen, A.(2006). Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies. Bio-medical Materials and Engineering, 16, 289-299.
  15. Gaske, S., Erdemir, A., Petre, M., Budhabhatti, S., & Cavanagh, P. R.(2006). Reduction of plantar heel pressures: Insole design using finite element analysis. Journal of Biomechanics, 39, 2363-2370. https://doi.org/10.1016/j.jbiomech.2005.08.006
  16. Hsu, Y. C., Cung, Y. W., Shili, S. L., Feng, C. K., Wei, S. H, Yu, C. H., & Chen, C. S.(2008). Using an optimization approach to design an insole for lowering plantar fascia stress-a finite element study. Annals of Biomedical Engineering, 36, 1345-1352. https://doi.org/10.1007/s10439-008-9516-x
  17. Lemmon, D., Shiang, T. Y., Hashmi, A., Ulbrecht, J. S., & Cavanagh, P. R.(1997). The effect of insoles in therapeutic footwear-a finite element approach. Journal of Biomechanics, 30, 615-620. https://doi.org/10.1016/S0021-9290(97)00006-7
  18. Lewis, G.(2003). Finite element analysis of a model of a therapeutic shoe: effect of material selection for the outsole. Bio-Medical Materials and Engineering, 13, 75-81.
  19. Nakamura, S., Crowninshield, R. D., & Cooper, R. R.(1981). An analysis of soft tissue loading in the foot - a preliminary report. Bulletin of Prosthetics Research 18, 27-34.
  20. Oda, T., Oomori, K., & Kaneko, Y.(2003). Running shoes development using a finite element ankle/joint model. Proceedings of the 6th Symposium on Footwear Biomechanics. Queenstown, New Zealand.
  21. Shiang, T. Y.(1997). The nonlinear finite element analysis and plantar pressure measurement for various shoe soles in heel region. Proceedings of the National Science Council, Republic of China. Part B. 21, 168-174.
  22. Shorten, M. R.(1998). Finite element modeling of soccer shoe soles. Proceedings of World Cup Scientific Congress. Lyons, France.
  23. Shorten, M. R.(1999). Biomechanically driven developments in sports shoe technology: the example of tuned air. Proceedings of the 4th Symposium on Footwear Biomechanics. Canmore, Canada.
  24. Spears, I. R., Miller-Young. J. E., Sharma, J., Ker, R. E., & Smith, E. W.(2007). The potential influence of the heel counter on internal stress during static standing: A combined finite element and positional MRI investigation. Journal of Biomechanics, 40, 2774-2780. https://doi.org/10.1016/j.jbiomech.2007.01.004
  25. Sun, Z., Howard, D., & Moatamedi, M. (2005). Finite element analysis of footwear and ground interaction. Strain, 41, 113-117. https://doi.org/10.1111/j.1475-1305.2005.00205.x
  26. Syngellakis, S., Arnold, M. A., Rassoulian, H.(2000). Assessment of the non-linear behaviour of plastic ankle foot orthoses by the finite element method. Proceedings of the Institution of Mechanical Engineers. Part H 214, 527-539. https://doi.org/10.1243/0954411001535561
  27. Verdejo, R. & Mills, N. J.(2004). Heel-shoe interactions and the durability of EVA foam running-shoe midsoles. Journal of Biomechanics, 37, 1379-1386. https://doi.org/10.1016/j.jbiomech.2003.12.022
  28. Yu, J., Cheung. J. T., Fan, Y. B., Zhang. Y., Leung. A. K., & Zhang. M.(2008). Development of a finite element model of female foot for high-heeled shoe design. Clinical Biomechanics, 23(S1), S31-38. https://doi.org/10.1016/j.clinbiomech.2007.09.005