A study on Reliability Enhancement Method and the Prediction Model Construction of Medium-Voltage Customers Causing Distribution Line Fault Using Data Mining Techniques

데이터 마이닝 기법을 이용한 특별고압 파급고장 발생가능 고객 예측모델 구축 및 신뢰도 향상방안에 관한 연구

  • 배성환 (국립서울산업대학교 IT정책전문대학원 산업정보시스템, 한국전력공사 기술기획처) ;
  • 김자희 (국립서울산업대학교 IT정책전문대학원) ;
  • 홍정식 (국립서울산업대학교 산업정보시스템공학과) ;
  • 임한승 (한국전력공사)
  • Published : 2009.10.01

Abstract

Distribution line fault has been reduced gradually by the efforts on improving the quality of electrical materials and distribution system maintenance. However faults caused by medium voltage customers have been increased gradually even though we have done many efforts. The problem is that we don't know which customer will cause the fault. This paper presents the concept to find these customers using data mining techniques, which is based on accumulated fault records of medium voltage customers in the past. It also suggests the prediction model construction of medium voltage customers causing distribution line fault and methods to enhance the reliability of distribution system. We expect that we can effectively reduce faults resulted from medium voltage customers, which is 30% of total faults.

Keywords

References

  1. 대한전기학회(김재철 외 16인), '최신 배전시스템 공학', 북스힐, pp. 2-3, 2006
  2. 한국전력공사, '배전설비 정전분석 및 예방대책', 2000-2008
  3. 한국전력공사, '고객파급 정전분석 및 예방대책', 2000-2008
  4. L. Xu. and M. Y. Chow, 'A Classification Approach for Power Distribution Systems Fault Cause Identification.', IEEE Trans. on Power Systems, Vol. 21, No.1, pp. 53-60, 2006 https://doi.org/10.1109/TPWRS.2005.861981
  5. H. Manjari Dola, 'Data mining for Distribution System Fault Classification', Power Symposium, Proc. of the 37th Annual North American, IEEE, pp. 457-462, 2005
  6. L. Xu., M. Y. Chow. and L. S. Taylor, 'Analysis of Tree-caused Faults in Power Distribution System.', in Proc. 35th North American Power Symp., 2003
  7. M. Y. Chow. and L. S. Taylor, 'Analysis and Prevention of Animal-caused Faults in Power Distribution Systems.', IEEE Trans. Power Del., Vol. 10, No.2, pp. 995-1001, 1995 https://doi.org/10.1109/61.400829
  8. M. Y. Chow., S. O. Yee. and L. S. Taylor, 'Recognition Animal-caused Faults m Power Distribution Systems using Artificial Neural Networks.', IEEE Trans. Power Del., Vol. 8, No.3, pp. 1268-1274, 1993 https://doi.org/10.1109/61.252652
  9. O. Dag. and C. Ucak, 'Fault Classification for Power Distribution Systems via A Combined Wavelet-neural Approach.', in Proc. Int. Conf. Power System Technology, Vol. 2, pp. 1309-1314, 2004
  10. K. L. Butler. and J. A. Momoh, 'A Neural Network Based Approach for Fault Diagnosis in Distribution Networks', in Proc. IEEE Power Engineering Society Winter Meeting, Vol. 2, pp. 1275-1278, 2000
  11. J. T. Peng., C. F. Chien. and T. L. B. Tseng, 'Rough Set Theory for Data Mining for Fault Diagnosis on Distribution Feeder.', Proc. Int. Elect. Eng., Gener., Transm., Distrib., Vol. 151. No.6, pp. 689-697, 2004 https://doi.org/10.1049/ip-gtd:20040917
  12. 황우현, 김자희, 장완성, 홍정식, 한득수, '데이터 마이닝 기법을 이용한 주상변압기 고장유형 분석 및 복구 예측 모델 구축에 관한 연구', 대한전기학회지 제57권 제9호, pp. 1507-1515, 2008
  13. 대한전기협회, '내선규정', pp. 399, 2006
  14. 한국전력공사, '배선설비 통계', 2000-2008
  15. 장남식, 홍성완, 장재호, '데이터 마이닝', 대청미디어, 2000
  16. 최종후, 한상태, 강현철, 김은석, 김미경, 이성건, 'Answer Tree 3.0을 이용한 데이터 마이닝 예측 및 활용', SPSS 아카데미, 2002
  17. 배화수, 조대현, 석경하, 김병수, 최국렬, 이종언, 노세원, 이승철, 손용희, 'SAS Enterprise Miner를 이용한 데티터 마이닝', 교우사, 2005
  18. S. Walsh, W. Potts, D. Wielenga, J. Amrhein, K. Brown, I. Krammer, B. Lucas. and P. Terrill, 'Applying Data Mining Techniques Using Enterprise Miner', SAS Institute Inc., 2004