References
- A. Anguraj and M. Mallika Arjunan, Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Elect. J. Diff. Eqns., Vol. 2005(2005), No.111, 1-8.
- D.D. Bainov and P.S. Simeonov, Systems with Impulse Effect, Ellis Horwood Ltd., Chichister, 1989.
- M. Benchohra and S.K. Ntouyas, Existence of mild solutions of semilinear evolution inclusions with nonlocal conditions, Georgian Math. J. 7(2000), 221-230.
- L. Byszewski, Theorems about the existence and uniqueness of a solution of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162(1991), 496-505.
- Y.-K. Chang, A. Anguraj and M. Mallika Arjunan, Existence results for non-densely defined neutral impulsive differential inclusions with non-local conditions, J. Appl. Math. & Comp.,(2008), 28(1)(2008), 79-91. https://doi.org/10.1007/s12190-008-0078-8
- K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179(1993), 630-637. https://doi.org/10.1006/jmaa.1993.1373
- X. Fu and K. Ezzinbi, Existence of solutions for neutral functional differential evolution equations with nonlocal conditions, Nonlinear Anal. 54(2004), 215-227.
- X. Fu, On solutions of neutral nonlocal evolution equations with nondense domain, J. Math. Anal. Appl., 299(2004), 392-410. https://doi.org/10.1016/j.jmaa.2004.02.062
- V. Lakshmikantham, D.D. Bainov, and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
- J. Liang, J.H. Liu and Ti-Jun Xiao, Nonlocal Cauchy problems governed by compact operator families, Nonlinear Anal. 37(2004), 183-189.
- J. Liang, J.H. Liu and Ti-Jun Xiao, Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. Comp. Model., 49(3-4)(2009), 794-804.
- J.H. Liu, Nonlinear impulsive evolution equations, Dynam. Contin. Discrete Impuls. Sys., 6(1999), 77-85.
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
- A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.