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ABSTRACT. In this article, we study the existence and uniqueness of mild and classical solu-
tions for a nonlinear impulsive differential equation with nonlocal conditions

u′(t) = Au(t) + f(t, u(t), Tu(t), Su(t)), 0 ≤ t ≤ T0, t ∕= ti,

u(0) + g(u) = u0,

Δu(ti) = Ii(u(ti)), i = 1, 2, . . . p, 0 < t1 < t2 < ⋅ ⋅ ⋅ < tp < T0,

in a Banach space X , where A is the infinitesimal generator of a C0 semigroup, g constitutes a
nonlocal conditions, and Δu(ti) = u(t+i )− u(t−i ) represents an impulsive conditions.

1. INTRODUCTION

Many evolution processes are characterized by the fact that at certain moments of time they
experience a change of state abruptly. These processes are subject to short term perturbations
whose duration is negligible in comparison with the duration of the processes. Consequently, it
is natural to assume that these perturbations act instantaneously, that is in the form of impulses.
For more details on this theory and applications, see the monographs of Bainov and Sime-
onov [2], Lakshmikantham et al. [9], and Samoilenko and Perestyuk [14], where numerous
properties of their solutions are studied and detailed bibliographies are given.

The starting point of this paper is the works in papers [1, 11, 12]. Especially, the authors in
[12] investigated the existence and uniqueness of mild and classical solutions for an impulsive
first order system

u′(t) = Au(t) + f(t, u(t)), 0 ≤ t ≤ T0, t ∕= ti,

u(0)) = u0,

Δu(ti) = Ii(u(ti)), i = 1, 2, . . . p, 0 < t1 < t2 < ⋅ ⋅ ⋅ < tp < T0.
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by using semigroup theory and Schauder’s fixed point theorem. And in [11], authors studied
existence and uniqueness of mild and classical solutions for the following impulsive system

u′(t) = Au(t) + f(t, u(t)), 0 ≤ t ≤ K, t ∕= ti,

u(0) + g(u) = u0,

Δu(ti) = Ii(u(ti)), i = 1, 2, . . . p, 0 < t1 < t2 < ⋅ ⋅ ⋅ < tp < K.

by using the Banach contraction principle and Schauder’s fixed point theorem.
Motivated by the above mentioned works [11, 12], the main purpose of this paper is to

prove the existence and uniqueness of mild and classical solutions for the following first order
impulsive system

u′(t) = Au(t) + f(t, u(t), Tu(t), Su(t)), 0 ≤ t ≤ T0, t ∕= ti, (1.1)

u(0) + g(u) = u0, (1.2)

Δu(ti) = Ii(u(ti)), i = 1, 2, . . . p, 0 < t1 < t2 < ⋅ ⋅ ⋅ < tp < T0. (1.3)

in a Banach space X , where A is the infinitesimal generator of a strongly continuous semigroup
{T (t)∣t ≥ 0}, f ∈ C([0, T0]×X ×X ×X,X), g ∈ PC([0, T0], X),

Tu(t) =

∫ t

0
K(t, s)u(s)ds, K ∈ C[D,R+],

Su(t) =

∫ T0

0
H(t, s)u(s)ds, H ∈ C[D0, R

+],

where D = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T0}, D0 = {(t, s) ∈ R2 : 0 ≤ t, s ≤ T0}
and PC([0, T0], X) consist of a functions u that are a map from [0, T0] into X , such that u(t)
is continuous at t ∕= ti and left continuous at t = ti, and the right limit u(t+i ) exists for
i = 1, 2, . . . p.

Evidently PC([0, T0], X) is a Banach space with the norm

∥u∥PC = sup
t∈[0,T0]

∥u(t)∥.

The nonlocal Cauchy problem was considered by Byszewski [4] and the importance of non-
local conditions in different fields has been discussed in [4] and [6] and the references therein.
For example, in [6] the author described the diffusion phenomenon of a small amount of gas in
a transparent tube by using the formula

g(x) =
n∑

k=0

ckx(tk),

where ck, k = 0, 1, . . . , n are given constants and 0 < t0 < t1 < ⋅ ⋅ ⋅ < tn < a. In this case
the above equations allows the additional measurements at t = tk, k = 0, 1, . . . , n. In the past
several years theorem about existence and uniqueness of differential, impulsive differential and
functional differential abstract evolution Cauchy problem with nonlocal conditions have been
studied by many authors [3, 5, 7, 8, 10].
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In the present paper, we discuss the existence and uniqueness for the impulsive problem
(1.1)-(1.3). Our approach here is based on the semigroup theory [13] and fixed point theorem.

2. EXISTENCE RESULTS

In this section, first we define the concept of mild and classical solutions for the problem
(1.1)-(1.3).

Definition 1. A function u(⋅) ∈ PC([0, T0], X) is a mild solution of equations (1.1)-(1.3) if it
satisfies

u(t) = T (t)[u0 − g(u)] +

∫ t

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds

+
∑

0<ti<t

T (t− ti)Ii(u(ti)), 0 ≤ t ≤ T0.

Definition 2. A classical solution of equations (1.1)-(1.3) is a function u(⋅) in PC([0, T0], X)∩
C1([0, T0]∖{t1, t2, . . . , tp}, X), u(t) ∈ D(A)( the domain of A) for t ∈ [0, T0]∖{t1, t2, . . . , tp},
which satisfies equations (1.1)-(1.3) on [0, T0].

The mild and classical solutions of (1.1)-(1.3) will be established under different conditions
of the functions f, g, Ii and the semigroup T (⋅).

2.1. Lipschitz conditions. Let B(X) be the Banach space of all linear and bounded operators
on X . Define

M = sup
t∈[0,T0]

∥T (t)∥B(X), (2.1)

which is a finite number.
Now we list out the following hypotheses:
(H1) f : [0, T0] × X × X × X → X, g : PC([0, T0], X) → X and Ii : X → X, i =

1, 2, . . . p are continuous and there exists constants L1, L2, L3 > 0, G > 0, ℎi >
0, i = 1, 2, . . . p, such that

∥f(t, x1, x2, x3)− f(t, y1, y2, y3)∥ ≤ L1∥x1 − y1∥+ L2∥x2 − y2∥+ L3∥x3 − y3∥,
t ∈ [0, T0], xi, yi ∈ X, i = 1, 2, 3.

∥g(u)− g(v)∥ ≤ G∥u− v∥, u, v ∈ PC([0, T0], X),

∥Ii(x)− Ii(y)∥ ≤ ℎi∥u− v∥, x, y ∈ X.

(H2) Denote L = max{L1, L2, L3}, K∗ = sup
t∈[0,T0]

∫ t

0
∣K(t, s)∣dt < ∞, and

H∗ = sup
t∈[0,T0]

∫ T0

0
∣H(t, s)∣dt < ∞.
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(H3) The constants L,G,K∗,H∗ satisfy the inequality

M
[
G+ LT0(1 +K∗ +H∗) +

p∑

i=1

ℎi

]
< 1.

Theorem 2.1. Assume that the hypotheses (H1)-(H3) are satisfied. Then for every u0 ∈ X , for
t ∈ [0, T0] the equation

u(t) = T (t)[u0 − g(u)] +

∫ t

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds

+
∑

0<ti<t

T (t− ti)Ii(u(ti))

has a unique mild solution.

Proof. Let u0 ∈ X be fixed. Define an operator F on PC([0, T0], X) by

(Fu)(t) = T (t)[u0 − g(u)] +

∫ t

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds

+
∑

0<ti<t

T (t− ti)Ii(u(ti)), 0 ≤ t ≤ T0.

Then it is clear that F : PC([0, T0], X) → PC([0, T0], X). Now we show that F is contraction.
For any u, v ∈ PC([0, T0], X), we have

∥(Fu)(t)− (Fv)(t)∥ ≤ ∥T (t)[g(u)− g(v)]∥+
∫ t

0
∥T (t− s)∥B(X)∥f(s, u(s), Tu(s), Su(s))

− f(s, v(s), T v(s), Sv(s))∥ds
+

∑

0<ti<t

∥T (t− ti)∥B(X)∥Ii(u(ti))− Ii(v(ti))∥

Using the hypothesis (H1) and equation (2.1), we have

∥(Fu)(t)− (Fv)(t)∥ ≤ MG∥u− v∥PC +M
[ ∫ t

0
L1∥u− v∥+ L2∥Tu− Tv∥

+ L3∥Su− Sv∥
]
ds+M∥u− v∥PC

p∑

i=1

ℎi. (2.2)

Now,
∫ t

0
L2∥Tu− Tv∥ds ≤ L2

∫ t

0

∫ s

0
∥K(s, ¿)∥∥u(¿)− v(¿)∥d¿ds
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≤ L2

∫ t

0
∥u(s)− v(s)∥

∫ s

0
∥K(s, ¿)∥d¿ds

≤ L2∥u(t)− v(t)∥
∫ t

0
K∗ds

≤ L2∥u− v∥PCK∗T0

(2.3)

Similarly,
∫ t

0
L3∥Su− Sv∥ds ≤ L3∥u− v∥PCH∗T0. (2.4)

Substitute the equations (2.3) and (2.4) into the equation (2.2), we have

∥(Fu)(t)− (Fv)(t)∥ ≤ MG∥u− v∥PC +M
[
L1T0∥u− v∥PC + L2∥u− v∥PCK∗T0

+ L3∥u− v∥PCH∗T0 + ∥u− v∥PC
p∑

i=1

ℎi

]

≤ M
[
G+ L1T0 + L2K

∗T0 + L3H
∗T0 +

p∑

i=1

ℎi

]
∥u− v∥PC .

Using the definition of L, we have

∥(Fu)(t)− (Fv)(t)∥ ≤ M
[
G+ LT0(1 +K∗ +H∗) +

p∑

i=1

ℎi

]
∥u− v∥PC

From hypothesis (H3), we have

∥Fu− Fv∥PC ≤ ∥u− v∥PC , u, v ∈ PC([0, T0], X).

Therefore, F is a contraction operator on PC([0, T0], X). Thus F has a unique fixed point,
which gives rise to a unique mild solution. This completes the proof. □

Remark 1. If S = 0 in equation (1.1) and assume that the hypotheses (H1)-(H2) are satisfied
(with simple modifications) and M [G+LT0(1+K∗)+

∑p
i=1 ℎi] < 1, then equation (1.1)-(1.3)

has a unique mild solution.

2.2. g is compact. It should be pointed out that a compact operator is a continuous operator
which maps a bounded set into a precompact set.

Now we assume the following hypotheses:

(H4) f is continuous and maps a bounded set into a bounded set.
(H5) g : PC([0, T0], X) → X and Ii : X → X, i = 1, 2, . . . p, are compact operators, and

T (⋅) is also compact.
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(H6) For each u0 ∈ X , there exists a constant r > 0 such that

M(∥u0∥+ sup
'∈Yr

∥g(')∥+ T0 sup
s∈[0,T0],'∈Yr

∥f(s, '(s), T'(s), S'(s)∥

+ sup
'∈Yr

p∑

i=1

∥Ii('(ti))∥) ≤ r,

where Yr = {' ∈ PC([0, T0], X) : ∥'(t)∥ ≤ r for t ∈ [0, T0]}.

Under these hypotheses, we can prove the following result.

Theorem 2.2. Let (H4)-(H6) be satisfied. Then for every u0 ∈ X , for t ∈ [0, T0] the equation

u(t) = T (t)[u0 − g(u)] +

∫ t

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds

+
∑

0<ti<t

T (t− ti)Ii(u(ti))

has at least a mild solution.

Proof. Let u0 ∈ X be fixed. Define an operator F on PC([0, T0], X) by

(Fu)(t) = T (t)[u0 − g(u)] +

∫ t

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds

+
∑

0<ti<t

T (t− ti)Ii(u(ti)).

The operator F is continuous from Yr to Yr. In order to use Schauder’s second fixed point
theorem to obtain a fixed point and hence a mild solution, we need to prove that F is a com-
pact operator. For this reason, we split (Fu)(t) as (F1u)(t) + (F2u)(t). That is (Fu)(t) =
(F1u)(t) + (F2u)(t), where

(F1u)(t) = T (t)[u0 − g(u)] +

∫ t

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds, 0 ≤ t ≤ T0,

(F2u)(t) =
∑

0<ti<t

T (t− ti)Ii(u(ti)), 0 ≤ t ≤ T0.

Now, we show that F1 and F2 are compact operators. First, we prove that F2 is a compact
operator. The operator

(F2u)(t) =
∑

0<ti<t

T (t− ti)Ii(u(ti)) =

⎧
⎨
⎩

0, t ∈ [0, t1],

T (t− t1)I1(u(t1)), t ∈ (t1, t2],
...∑p

i=1 T (t− ti)Ii(u(ti)), t ∈ (tp, T0],
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and that the interval [0, T0] is divided into finite subintervals by ti, i = 1, 2, . . . , p, so that we
only need to prove that

W = {T (⋅ − t1)I1(u(t1)) : ⋅ ∈ [t1, t2], u ∈ Yr}

is precompact in C([t1, t2], X), as the cases for other subintervals are the same. From hypoth-
esis (H5), we see that for each t ∈ [t1, t2], the set {T (t− t1)I1(u(t1)) : u ∈ Yr} is precompact
in X . Next, for t1 ≤ s < t ≤ t2, we have, using the semigroup property,

∥T (t− t1)I1(u(t1))− T (s− t1)I1(u(t1))∥ = ∥T (s− t1)[T (t− s)− T (0)]I1(u(t1))∥
≤ M∥[T (t− s)− T (0)]I1(u(t1))∥ (2.5)

Thus, the functions in W are equicontinuous due to compactness of I1 and the strong continuity
of T (⋅). From the Arzela-Ascoli theorem, we deduce that F2 is a compact operator.

Similarly we can prove compactness of F1. That is, for each t ∈ [0, T0], the set {T (t)[u0 −
g(u)] : u ∈ Yr} is precompact in X , since g is compact. Also, for each t ∈ (0, T0] and
² ∈ (0, t),

{∫ t−²

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds : u ∈ Yr

}

=

{
T (²)

∫ t−²

0
T (t− s− ²)f(s, u(s), Tu(s), Su(s))ds : u ∈ Yr

}

is precompact in X , since T (⋅) is compact. Then, as

∫ t−²

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds →

∫ t

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds

as ² → 0.

We can conclude that
{∫ t

0 T (t− s)f(s, u(s), Tu(s), Su(s))ds : u ∈ Yr

}
is precompact in X

using the total boundedness. Therefore, for each t ∈ [0, T0], {(F1u)(t) : u ∈ Yr} is precompact
in X .

Next, we show that the equicontinuity of Q = {(F1u)(⋅) : ⋅ ∈ [0, T0], u ∈ Yr}. By using the
idea of equation (2.5), we can prove the equicontinuity of {T (⋅)[u0 − g(u)] : ⋅ ∈ [0, T0], u ∈
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Yr}. For the second term in Q, we let 0 ≤ s1 < s2 ≤ T0 and obtain

∥∥∥∥
∫ s2

0
T (s2 − s)f(s, u(s), Tu(s), Su(s))ds−

∫ s1

0
T (s1 − s)f(s, u(s), Tu(s), Su(s))ds

∥∥∥∥

= ∥
∫ s1

0
[T (s2 − s)− T (s1 − s)]f(s, u(s), Tu(s), Su(s))ds

+

∫ s2

s1

T (s2 − s)f(s, u(s), Tu(s), Su(s))ds∥

≤
∫ s1

0
∥T (s2 − s)− T (s1 − s)∥L(X) ∥f(s, u(s), Tu(s), Su(s))∥ds

+M

∫ s2

s1

∥f(s, u(s), Tu(s), Su(s))∥ds (2.6)

If s1 = 0, then the right-hand side of (2.6) can be made small when s2 is small independently
of u ∈ Yr. If s1 > 0, then we can find a small number ´ > 0 so that if s1 ≤ ´, then the
right-hand side of (2.6) can be estimated as

∫ s1

0
∥T (s2 − s)− T (s1 − s)∥L(X) ∥f(s, u(s), Tu(s), Su(s))∥ds

+M

∫ s2

s1

∥f(s, u(s), Tu(s), Su(s))∥ds

≤ 2´M max{∥f(s, u(s), Tu(s), Su(s))∥ : u ∈ Yr, s ∈ [0, T0]}

+M

∫ s2

s1

∥f(s, u(s), Tu(s), Su(s))∥ds,

which can be made small when s2 − s1 is small independently of u ∈ Yr.
If s1 > ´, then the right-hand side of (2.6) can be estimated as

∫ s1

0
∥T (s2 − s)− T (s1 − s)∥L(X) ∥f(s, u(s), Tu(s), Su(s))∥ds

+M

∫ s2

s1

∥f(s, u(s), Tu(s), Su(s))∥ds

≤
∫ s1−´

0
∥T (s2 − s)− T (s1 − s)∥L(X) ∥f(s, u(s), Tu(s), Su(s))∥ds

+

∫ s1

s1−´
∥T (s2 − s)− T (s1 − s)∥L(X) ∥f(s, u(s), Tu(s), Su(s))∥ds

+M

∫ s2

s1

∥f(s, u(s), Tu(s), Su(s))∥ds



EXISTENCE RESULTS FOR IMPULSIVE.. 211

≤
∫ s1−´

0
∥T (s2 − s)− T (s1 − s)∥L(X) ∥f(s, u(s), Tu(s), Su(s))∥ds

+ 2´M max{∥f(s, u(s), Tu(s), Su(s))∥ : u ∈ Yr, s ∈ [0, T0]}

+M

∫ s2

s1

∥f(s, u(s), Tu(s), Su(s))∥ds

Now, as T (⋅) is compact, T (t) is operator norm continuous for t > 0. Thus T (t) is operator
norm continuous uniformly for t ∈ [´, T0]. Therefore, ∥T (s2−s)−T (s1−s)∥L(X) and hence∫ s1−´
0 ∥T (s2 − s) − T (s1 − s)∥L(X)∥f(s, u(s), Tu(s), Su(s))∥ds can be made small when
s2−s1 is small independently of u ∈ Yr. Thus the function in Q are equicontinuous. Therefore,
F1 is a compact operator by the Arzela-Ascoli theorem, and hence F is also a compact operator.
Now, Schauder’s second fixed point theorem implies that F has a fixed point, which gives rise
to a mild solution. This completes the proof. □

2.3. g is not Lipschitz and not compact. Here, we will prove mild solutions under the fol-
lowing hypotheses:

(H7) The function f is continuous and there exists a constant L > 0 such that

∥f(t, x)− f(t, y)∥ ≤ L∥x− y∥, t ∈ [0, T0], x, y ∈ X.

(H8) The function Ii : X → X, i = 1, 2, . . . , p, are compact operators, and T (⋅) is also
compact.

(H9) For each u0 ∈ X , there exists a constant r > 0 such that

M(∥u0∥+ sup
'∈Yr

∥g(')∥+ T0 sup
s∈[0,T0],'∈Yr

∥f(s, '(s), T'(s), S'(s)∥

+ sup
'∈Yr

p∑

i=1

∥Ii('(ti))∥) ≤ r.

(H10) The function g : PC([0, T0], X) → X is continuous, maps Yr into a bounded set,
and there is a ± = ±(r) ∈ (0, t1) such that g(') = g(Ã) for any ',Ã ∈ Yr with
'(s) = Ã(s), s ∈ [±, T0].

Theorem 2.3. Let (H7)-(H10) be satisfied. Then for every u0 ∈ X , for t ∈ [0, T0] the equation

u(t) = T (t)[u0 − g(u)] +

∫ t

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds

+
∑

0<ti<t

T (t− ti)Ii(u(ti))

has at least a mild solution.

Proof. For ± = ±(r) ∈ (0, t1), set Y (±) = PC([±, T0], X) = restrictions of functions in
PC([0, T0], X) on [±, T0], Yr(±) = {' ∈ Y (±); ∥'(t)∥ ≤ r for t ∈ [±, T0]}. For u ∈ Yr(±)
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fixed, we define a mapping Fu on Yr by

(Fu')(t) = T (t)[u0 − g(ũ)] +

∫ t

0
T (t− s)f(s, '(s), T'(s), S'(s))ds

+
∑

0<ti<t

T (t− ti)Ii(u(ti)), t ∈ [0, T0],

where

ũ(t) =

{
u(t), if t ∈ [±, T0],

u(±), if t ∈ [0, ±].

By hypothesis (H9), the mapping Fu maps Yr into itself. Moreover, by hypothesis (H7) we
deduce inductively that for m ∈ N ,

∥(Fm
u ')(t)− (Fm

u Ã)(t)∥ ≤ [MLt(1 +K∗ +H∗)]m

m!
sup
s∈[0,t]

∥'(s)− Ã(s)∥,

t ∈ [0, T0], ', Ã ∈ Yr, m = 1, 2, . . . .

Hence, we infer that for m large enough, the mapping Fm
u is a contractive mapping. Thus, by

a well-known extension of the Banach contraction mapping principle, Fu has a unique fixed
point 'u ∈ Yr, i.e.,

'u(t) = T (t)[u0 − g(ũ)] +

∫ t

0
T (t− s)f(s, 'u(s), T'u(s), S'u(s))ds

+
∑

0<ti<t

T (t− ti)Ii(u(ti)), t ∈ [0, T0].

Based on this fact, we define a mapping ℱ from Yr(±) into itself by

(ℱu)(t) = 'u(t), t ∈ [±, T0]

= T (t)[u0 − g(ũ)] +

∫ t

0
T (t− s)f(s, 'u(s), T'u(s), S'u(s))ds

+
∑

0<ti<t

T (t− ti)Ii(u(ti)), t ∈ [±, T0].

Similarly to the above and [10], we can use compactness and equicontinuity and then apply the
Arzela-Ascoli theorem to prove that ℱ is a compact operator. Therefore, we can use Schauder’s
second fixed point theorem to conclude that ℱ has a fixed point u∗ ∈ Yr(±). We set u = 'u∗ .
Then

u(t) = T (t)[u0 − g(ũ∗)] +
∫ t

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds

+
∑

0<ti<t

T (t− ti)Ii(u∗(ti)), t ∈ [0, T0]. (2.7)
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But g(ũ∗) = g(u) and u∗(ti) = u(ti), since u∗(t) = (ℱu∗)(t) = 'u∗(t) = u(t), t ∈ [±, T0],
by the definition of ℱ . This concludes, together with (2.7), that u(t) is a solution of (1.1)-(1.3).
This completes the proof. □

2.4. Classical solutions. Now, we recall the following result.

Lemma 1. [1] Assume that u0 ∈ D(A), qi ∈ D(A), i = 1, 2, . . . , p. and that f ∈ C1([0, T0]×
X ×X ×X,X). Then the impulsive equation

u′(t) = Au(t) + f(t, u(t), Tu(t), Su(t)), 0 < t < T0, t ∕= ti,

u(0) = u0,

Δu(ti) = qi, i = 1, 2, 3, . . . , p.

has a unique classical solution u(⋅) which, for t ∈ [0, T0], satisfies

u(t) = T (t)u0 +

∫ t

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds+

∑

0<ti<t

T (t− ti)qi.

Now, we make the following hypothesis:
(H11) There exists a constant L > 0 such that

∥f(t, x)− f(t, y)∥ ≤ L∥x− y∥, t ∈ [0, T0], x, y ∈ X.

Theorem 2.4. Let (H11) be satisfied and u(⋅) be a mild solution of (1.1)-(1.3). Assume that
u0 ∈ D(A), Ii(u(ti)) ∈ D(A), i = 1, 2, . . . , p, and that f ∈ C1([0, T0]×X ×X ×X,X).
Then u(⋅) gives rise to a unique classical solution of (1.1)-(1.3).

Proof. Let u(⋅) be the mild solution. Let qi = Ii(u(ti)), i = 1, 2, . . . , p. Then from Lemma
2.1,

v′(t) = Av(t) + f(t, v(t), T v(t), Sv(t)), 0 < t < T0, t ∕= ti,

v(0) = u(0) = u0 − g(u)

Δv(ti) = qi, i = 1, 2, 3, . . . , p.

has a unique classical solution v(⋅) which satisfies for t ∈ [0, T0],

v(t) = T (t)[u0 − g(u)] +

∫ t

0
T (t− s)f(s, v(s), T v(s), Sv(s))ds+

∑

0<ti<t

T (t− ti)Ii(u(ti)).

Since u(⋅) is the mild solution of (1.1)-(1.3), for t ∈ [0, T0],

u(t) = T (t)[u0− g(u)]+

∫ t

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds+

∑

0<ti<t

T (t− ti)Ii(u(ti)).

Thus, we get

v(t)− u(t) =

∫ t

0
T (t− s)[f(s, v(s), T v(s), Sv(s))− f(s, u(s), Tu(s), Su(s))]ds,
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which gives, by hypothesis (H11) and an application of Gronwall’s inequality,

∥v − u∥PC = 0.

This implies that u(⋅) gives rise to a classical solution. This completes the proof. □

Remark 2. If S = 0 in equation (1.1) amd assume that the hypothesis (H11) be satisfied
and u(⋅) be a mild solution of (1.1)-(1.3). Assume that u0 ∈ D(A), Ii(u(ti)) ∈ D(A), i =
1, 2, . . . , p, and that f ∈ C1([0, T0] ×X ×X,X). Then u(⋅) gives rise to a unique classical
solution of (1.1)-(1.3).

Now, we consider the simple case on g. If g = 0 in (1.2), then the problem (1.1)-(1.3) is
reduced to initial value problem

u′(t) = Au(t) + f(t, u(t), Tu(t), Su(t)), 0 ≤ t ≤ T0, t ∕= ti, (1.4)

u(0) = u0, (1.5)

Δu(ti) = Ii(u(ti)), i = 1, 2, . . . p, 0 < t1 < t2 < ⋅ ⋅ ⋅ < tp < T0. (1.6)

where A, f, Ii are defined as in problem (1.1)-(1.3).
Now, we prove the existence and uniqueness of mild and classical solution for the problem

(1.4)-(1.6).
For this reason, we list the following hypotheses:

(H1′) f : [0, T0] ×X ×X ×X → X, and Ii : X → X, i = 1, 2, . . . p are continuous and
there exists constants L1, L2, L3 > 0, ℎi > 0, i = 1, 2, . . . p, such that

∥f(t, x1, x2, x3)− f(t, y1, y2, y3)∥ ≤ L1∥x1 − y1∥+ L2∥x2 − y2∥+ L3∥x3 − y3∥,
t ∈ [0, T0], xi, yi ∈ X, i = 1, 2, 3.

∥Ii(x)− Ii(y)∥ ≤ ℎi∥x− y∥, x, y ∈ X.

(H3′) The constants L,K∗,H∗ satisfy the inequality

M
[
LT0(1 +K∗ +H∗) +

p∑

i=1

ℎi

]
< 1.

Now, we state the following theorems without proof. The proof is similar to Theorem 2.1
and Theorem 2.4.

Theorem 2.5. Assume that the hypotheses (H1′), (H2) and (H3′) are satisfied. Then for every
u0 ∈ X , for t ∈ [0, T0] the equation

u(t) = T (t)u0 +

∫ t

0
T (t− s)f(s, u(s), Tu(s), Su(s))ds

+
∑

0<ti<t

T (t− ti)Ii(u(ti))

has a unique mild solution.
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Theorem 2.6. Let (H11) be satisfied and u(⋅) be a mild solution of (1.4)-(1.6). Assume that
u0 ∈ D(A), Ii(u(ti)) ∈ D(A), i = 1, 2, . . . , p, and that f ∈ C1([0, T0]×X ×X ×X,X).
Then u(⋅) gives rise to a unique classical solution of (1.4)-(1.6).
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