Acknowledgement
Supported by : Kyungsung University
References
- D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), 724–760.
- I. Babuska, M. Suri, The h-p version of the finite element method with quasi-uniform meshes, RAIRO Model. Math. Anal. Numer. 21 (1987), 199–238. https://doi.org/10.1051/m2an/1987210201991
- I. Babuska, M. Suri, The optimal convergence rates of the p-version of the finite element method, SIAM J. Numer. Anal. 24 (1987), 750–776. https://doi.org/10.1137/0724049
- G. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp. 31 (1977), 45–59. https://doi.org/10.1090/S0025-5718-1977-0431742-5
- J. Douglas, T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Lect. Notes. Phys. 58 (1976), 207–216.
- J. A. Nitsche, Uber ein Variationspringzip zur Losung von Dirichlet-Problemen bei Verwendung von Teiliaumen, die Keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36 (1971), 9–15. https://doi.org/10.1007/BF02995904
- J. T. Oden, I. Babuska, C. E. Baumann, A discontinuous hp finite element method for diffusion provlems, J. Comput. Phys. 146 (1998), 491–519. https://doi.org/10.1006/jcph.1998.6032
- M. R. Ohm, H. Y. Lee, J. Y. Shin, Error estimates for discontinuous Galerkin method for nonlinear parabolic equations, Journal of Math. Anal. and Appli., 315 (2006), 132–143. https://doi.org/10.1016/j.jmaa.2005.07.027
- B. Riviere, M. F. Wheeler, K. Banas, Part II. Discontinuous Galerkin method applied to single phase flow in porous media, Comput. Geosci. 4(4) (2000), 337–341. https://doi.org/10.1023/A:1011546411957
- B. Riviere, M. F. Wheeler, V. Girault, Part I. Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems, Comput. Geosci. 8 (1999), 337–360.
- B. Riviere, M. F. Wheeler, V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal. 39(3) (2001), 902–931. https://doi.org/10.1137/S003614290037174X
- T. Sun, D. Yang, Error estimates for a discontinuous Galerkin method with interior penalties applied to nonlinear Sobolev equations, Numerical Methods Partial Differential Equations 24(3) (2008), 879–896. https://doi.org/10.1002/num.20294
- T. Sun, D. Yang, A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations, Applied Mathematics and Computation 200 (2008), 147–159. https://doi.org/10.1016/j.amc.2007.10.053
- M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1978), 152–161. https://doi.org/10.1137/0715010