DUALITY AND SUFFICIENCY IN MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH INVEXITY

  • Kim, Do-Sang (DEPT. OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY) ;
  • Lee, Hyo-Jung (DEPT. OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY)
  • Received : 2009.03.03
  • Accepted : 2009.04.19
  • Published : 2009.06.25

Abstract

In this paper, we introduce generalized multiobjective fractional programming problem with two kinds of inequality constraints. Kuhn-Tucker sufficient and necessary optimality conditions are given. We formulate a generalized multiobjective dual problem and establish weak and strong duality theorems for an efficient solution under generalized convexity conditions.

Keywords

References

  1. C.R. Bector, Duality in nonlinear fractional programming, Zeitschrift fur Ope. Res. 17 (1973), 183-193.
  2. V. Chankong and Y.Y. Haimes, Multiobjective Decision Making: Theory and Methodology, Elsevier Science Publishing Co. Inc., 1983.
  3. B.D. Craven and B. Mond, Fractional programming with invexity, in: Andrew Eberhard, Robin Hill, Daniel Ralph and Barney M. Glover(eds.), Progress in Optimization: Contributions from Australasia, Kluwer Academic Publishers, 1999, 79-89.
  4. M.A. Hanson, On sufficiency of the Kuhn-Tucker condition, J. Math. Anal. Appl. 80 (1981), 545-550. https://doi.org/10.1016/0022-247X(81)90123-2
  5. R. Jagannathan, Duality for nonlinear fractional programs, Z. Oper. Res. 17 (1973), 1-3.
  6. V. Jeyakumar and B. Mond, On generalized convex mathematical programming, J. Optl. Theo. Appl. 34(1992),43-53.
  7. Z.A. Khan and M.A. Hanson, On ratio invexity in mathematical programming, J. Math. Anal. Appl. 205 (1997), 330-336. https://doi.org/10.1006/jmaa.1997.5180
  8. P. Kanniappan, Necessary conditions for optimality of nondifferentiable convex multiobjective program, J. Opti. Theo. Appl. 40 (1983), 167-174. https://doi.org/10.1007/BF00933935
  9. D.S. Kim and S.J. Kim, Nonsmooth fractional programming with generalized ratio invexity, RIMS Kokyuroku 1365, April, pp.116-127, (2004).
  10. O.L. Mangasarian, Nonlinear programming, McGraw-Hill, New York, 1969.
  11. B. Mond and T.Weir, Duality for fractional programming with generalized convexity conditions, J. Inf. Optim. sci. 3 (1982), 105-124.
  12. B. Mond and T. Weir, Generalized convexity and higher order duality, in: S. Schaible, W.T. Ziemba(Eds.), Generalized Convexity in Optimization and Economics, Academic Press, New York, 1981, 263-280.
  13. S. Schaible, Duality in fractional programming : a unified approach, Oper. Res. 24 (1976), 452-461. https://doi.org/10.1287/opre.24.3.452
  14. S. Schaible, Fractional programming I : duality, Management Sci., 22 (1976), 858-867. https://doi.org/10.1287/mnsc.22.8.858
  15. P. Wolfe, A duality theorem for nonlinear programming, Quart. Appl. Math. 19 (1961), 239-244. https://doi.org/10.1090/qam/135625