References
- Casten R. G. , Holland C. F., Stability properties of solutions to systems of reaction-diffusion equations, SIAAM J. Appl. Math., 33 (1977) 353-364. https://doi.org/10.1137/0133023
- Cavani M. Farkas M. Bifurcation in a predator-prey model with memory and diffusion II: Turing bifurcation. Acta Math. Hungar. 63 (1994) 375-393. https://doi.org/10.1007/BF01874463
- Chattopadhyay J., Sarkar, A.K., Tapaswi, P.K., Effect of cross-diffusion on a diffusive prey-predator system-a nonlinear analysis. J. Biol. Sys. 4(1996) 159-169. https://doi.org/10.1142/S0218339096000120
- Farkas M. Dynamical Models in Biology, Academic Press, 2001.
- Farkas M. Two ways of modeling cross diffusion, Nonlinear Analysis, TMA., 30 (1997) 1225-1233. https://doi.org/10.1016/S0362-546X(96)00161-7
- Freedman, H.I., Shukla, J.B., The effect of a predator resource on a diffusive predator-prey system. Nat. Res. Model. 3(3) (1989) 359-383. https://doi.org/10.1111/j.1939-7445.1989.tb00086.x
- Murray J. D. Mathematical Biology, Berlin, Springer-Verlag, 1989.
- Okubo A. Diffusion and Ecological Problems: Models, Springer-Verlag, Berlin, 1980.
- Okubo, A., Levin S. A. Diffusion and Ecological Problems: Modern Perspectives, Second Edition (Springer, Berlin), 2000.
- Takeuchi Y. Global Dynamical Properties of Lotka-Volterra system, World Scientific, 1996.
- Turing A. M. The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London B237, (1953) 37-72.
- Turing A. M. The chemical basis of morphogenesis, Bull. Math. Biol. 52 (1990) 153-197. https://doi.org/10.1007/BF02459572