References
- P. F. Antonietti and B. Ayuso, Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case, M2AN Math. Model. Numer. Anal. 41 (2007), no. 1, 21–54. https://doi.org/10.1051/m2an:2007006
- D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. https://doi.org/10.1137/S0036142901384162
- P. Bastian and V. Reichenberger, Multigrid for higher order discontinuous Galerkin finite elements applied to groundwater flow, Technical Report 2000-37, SFB 359, Heidelberg University, 2000.
- J. H. Bramble, R. E. Ewing, J. E. Pasciak and J. Shen, The analysis of multigrid algorithms for cell centered finite difference methods, Adv. Comput. Math. 5 (1996), no. 1, 15–29. https://doi.org/10.1007/BF02124733
- S. C. Brenner and J. Zhao, Convergence of multigrid algorithms for interior penalty methods, Appl. Numer. Anal. Comput. Math. 2 (2005), no. 1, 3–18. https://doi.org/10.1002/anac.200410019
- V. A. Dobrev, R. D. Lazarov, P. S. Vassilevski and L. T. Zikatanov, Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations, Numer. Linear Algebra Appl. 13 (2006), no. 9, 753–770. https://doi.org/10.1002/nla.504
- V. A. Dobrev, R. D. Lazarov and L. T. Zikatanov, Preconditioning of symmetric interior penalty discontinuous Galerkin FEM for elliptic problems, In Domain decomposition methods in science and engineering XVII, 33–44, Lect. Notes Comput. Sci. Eng., 60, Springer, Berlin, 2008.
- X. Feng and O. A. Karakashian, Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems, SIAM J. Numer. Anal. 39 (2001), no. 4, 1343–1365. https://doi.org/10.1137/S0036142900378480
- M. Griebel and P. Oswald, On the abstract theory of additive and multiplicative Schwarz algorithms, Numer. Math. 70 (1995), no. 2, 163–180. https://doi.org/10.1007/s002110050115
- J. Gopalakrishnan and G. Kanschat, A multilevel discontinuous Galerkin method, Numer. Math. 95 (2003), no. 3, 527–550. https://doi.org/10.1007/s002110200392
- B. T. Helenbrook and H. L. Atkins, Application of p multigrid to discontinuous Galerkin formulations of the Poisson equation, AIAA Journal 44 (2005), no. 3, 566–575.
- B. T. Helenbrook and H. L. Atkins, Solving discontinuous Galerkin formulations of Poisson's equation using geometric and p multigrid, AIAA Journal 46 (2008), no. 4, 894–902. https://doi.org/10.2514/1.31163
- P. W. Hemker, W. Hoffmann and M. H. van Raalte, Two-level Fourier analysis of a multigrid approach for discontinuous Galerkin discretization, SIAM J. Sci. Comput. 25 (2003), no. 3, 1018–1041. https://doi.org/10.1137/S1064827502405100
- D. Y. Kwak, V -cycle multigrid for cell-centered finite differences, SIAM J. Sci. Comput. 21 (1999), no. 2, 552–564. https://doi.org/10.1137/S1064827597327310
- D. Y. Kwak and J. S. Lee, Multigrid algorithm for the cell-centered finite difference method. II. Discontinuous coefficient case, Numer. Methods Partial Differential Equations 20 (2004), no. 5, 742–764. https://doi.org/10.1002/num.20001
- C. Lasser and A. Toselli, An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems, Math. Comp. 72 (2003), no. 243, 1215–1238. https://doi.org/10.1090/S0025-5718-03-01484-4
- B. Riviere, Discontinuous Galerkin methods for solving elliptic and parabolic equations. Theory and implementation, Frontiers in Applied Mathematics, 35. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.
- A. Toselli and O.Widlund, Domain decomposition methods-algorithms and theory. Springer Series in Computational Mathematics, 34. Springer-Verlag, Berlin, 2005.
- J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (1992), no. 4, 581-613. https://doi.org/10.1137/1034116