Inhibition of SKTI Synthesis in Agrobacterium rhizogenes-induced Hairy Root Reduces the Number of Nodule in Soybean

Kunitz Trypsin Inhibitor 발현 억제에 의한 콩 뿌리혹 수의 감소

  • Kim, Sun-Hyung (Department of Crop Science & Biotechnology, Dankook University) ;
  • Lim, Chae-Woo (Department of Crop Science & Biotechnology, Dankook University) ;
  • Park, Ji-Young (Department of Crop Science & Biotechnology, Dankook University) ;
  • Hwang, Cheol-Ho (Department of Crop Science & Biotechnology, Dankook University)
  • 김선형 (단국대학교 식량생명공학과) ;
  • 임채우 (단국대학교 식량생명공학과) ;
  • 박지영 (단국대학교 식량생명공학과) ;
  • 황철호 (단국대학교 식량생명공학과)
  • Published : 2009.09.30

Abstract

In nitrogen-limited conditions, rhizobia lead to formation of nitrogen-fixing nodules on the roots of leguminous plants. The process of nodulation is autoregulated by pre-existing nodules in the same root system. The altered profile of sap proteins by inoculation with B. japonicum may indicate presence of a signal responsible for autoregulation transferred through stem. The 20 kDa protein enhanced by innoculation significantly decreased in intensity from 2.5 to 7 days after inoculation (DAI). However 6 kDa protein did increase during such a transition period. Western blot analysis showed that both 20 kDa and 6 kDa were cross-reacted with the SKTI antiserum. This suggests that SKTI may be involved in soybean nodulation by specific induction and degradation in stem sap during early stage of nodulation. RNAi technique and Agrobacterium rhizogenes-mediated transformation were applied to investigate the function of SKTI in nodulation. We have found that the number of rhizobium-induced nodule was much less in SKTIi-silenced hairy roots than the non-silenced. Indeed the quantitative RT-PCR showed that the expression level of SKTI gene was reduced over 40% in the transgenic hairy roots compared to the non-transgenic. It appears that the observed early induction of SKTI and degradation into small peptide in a specific time manner may be involved in autoregulation of nodulation in soybean and the specific mechanism of such regulation remains to be investigated.

콩과식물의 뿌리혹 형성을 조절하는 신호물질의 확인을 위해 신팔달콩2호의 줄기 수액 단백질 중에서 B. japonicum USDA110의 접종 후 2.5일(DAI)에 20 kDa의 SKTI 단백질이 증가하였다가 7 DAI에는 감소되면서 6 kDa의 작은 크기의 단백질이 증가되었다. 이러한 단백질의 차등발현은 조사한 3종의 콩에서 모두 유사하게 나타났으며 특히 대원콩에서 가장 두드러졌다. Western 분석으로 7 DAI에서 증가하는 6 kDa 단백질이 SKTI 항체와 특이적 반응을 하는 것으로 확인하여 SKTI가 절단되어 생긴 펩타이드로 추정되었다. 이러한 결과를 통해 20 KDa의 SKTI단백질이 콩의 뿌리혹 착생 초기단계인 2.5 DAI에 영향을 주고, 7 DAI로 진행되면서 6 kDa의 작은 크기의 단백질로 분해되어 그 양이 감소하는 것으로 생각된다. RNAi를 이용하여 유전자 기능이 억제된 형질전환된 모상근의 뿌리혹을 실제 형질전환이 확인된 모상근에 착생된 뿌리혹의 수를 비교한 결과 비재조합 A. rhizogenes을 접종시킨 대조구에 비해 SKTI RNAi 유전자를 형질전환한 모상근에서 모상근 당 착생된 뿌리혹 수가 감소되었다. 실시간 PCR 방법으로 형질전환된 모상근의 SKTI 전사체 수준에서도 상응하는 차이를 확인하였다. 이에 정확한 기작을 알 수 없지만 SKTI유전자가 뿌리혹 형성 초기에 뿌리혹 형성과정에 직간접적으로 관련하고 있음을 확인하였다. Sesbania rostrata의 뿌리혹 발생과정의 Protease 저해제와 같이 뿌리 혹 내의 감염세포 대 비감염세포의 비율을 조절하는 SKTI 발현 억제는 이러한 균형을 교란하여 뿌리혹의 생성을 억제하는 것으로 추정된다.

Keywords

References

  1. Birk, Y. 1961. Purification and some properties of a highly active inhibitor of trypsin and alpha-chymotrypsin from soybeans. Biochim. Biophys. Acta, 54, 378-381 https://doi.org/10.1016/0006-3002(61)90387-0
  2. Brewin, N. J. 2004. Plant cell wall remodelling in the Rhizobiumlegume symbiosis. Crit. Rev. Plant Sci. 23 : 293-316 https://doi.org/10.1080/07352680490480734
  3. Caetano-Anolles, G. and Gresshoff, P. M. 1991. Plant genetic control of nodulation. Annu. Rev. Microbiol. 45 : 345-382 https://doi.org/10.1146/annurev.mi.45.100191.002021
  4. Crespi, M. and Galvez, S. 2000. Molecular mechanisms in root nodule development. J. Plant Growth Reg. 19 : 155-166 https://doi.org/10.1007/s003440000023
  5. Day, D. A., Price, G. D., and Udvardi, M. K. 1989. Membrane interface of the Bradyrhizobium japonicum-Glycine max symbiosis: peribacteroid membrane unit from soybean nodules. Aust J Plant Physiol. 16 : 69-84 https://doi.org/10.1071/PP9890069
  6. Djordjevic, M. A., Oakes, M., Li, D. X., Hwang, C. H., Hocart, C. H., Gresshoff, P. M. 2007. The Glycine max xylem sap and apoplast proteome. J Proteome Res.6(9) : 3771-3779 https://doi.org/10.1021/pr0606833
  7. Esseling, J. J. Lhuissier, F., Emons, A. M. C. 2003. Nod factor induced root hair curling: continuous polar growth toward the point of Nod factor application. Plant Physiol. 132 : 1982-1988 https://doi.org/10.1104/pp.103.021634
  8. Frattali, V. and Steiner, R. F. 1968. Soybean inhibitors. I. Separation and some properties of three inhibitors from commercial crude soybean trypsin inhibitor. Biochemistry. 7(2) : 521-530 https://doi.org/10.1021/bi00842a006
  9. Geurts, R., Fedorova, E., and Bisseling, T. 2005. Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr. Opin. Plant Biol. 8 : 346-352 https://doi.org/10.1016/j.pbi.2005.05.013
  10. Gresshoff, P. M. and A. C. Delvels. 1986. Plant genetic approaches to symbiotic nodulation and nitrogen fixation in legumes. Plant Gene Research 3 : 159-206
  11. Habu, Y., Fukushima, H., Sakata, Y., Abe, H., Funada, and R. 1996. A gene encoding a major Kunitz proteinase inhibitor of storage organs of winged bean is also expressed in the phloem of stems. Plant Mol. Biol. 32(6) : 1209-1213 https://doi.org/10.1007/BF00041408
  12. Hayashi, S., Gresshoff, P. M., and Kinkema, M. 2008. Molecular analysis of lipoxygenases associated with nodule development in soybean. Mol Plant Microbe Interact. 21(6) : 843-53 https://doi.org/10.1094/MPMI-21-6-0843
  13. Hymowitz, T. and N. Kaizuma. 1981. Soybean seed proteins electrophoresis profiles from 15 Asian countries or regions: hypotheses on paths of dissemination of soybeans from China. Economic Botany 35(1) : 10-23 https://doi.org/10.1007/BF02859210
  14. Kereszt, A., Li, D., Indrasumunar, A., Mguyen G. DT, Nontachaiyapoom, S., Kinkema, M., and Gresshoff, P. M. 2007. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nature Protocols 2(4) : 948-952 https://doi.org/10.1038/nprot.2007.141
  15. Kim, M. Y., Van, K., Lestari, P., Moon, J. K., and Lee, S. H. 2005. SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean. Theor Appl Genet. 110 : 1003-1010 https://doi.org/10.1007/s00122-004-1887-2
  16. Kunitz, M. 1945. Crystallization of a soybean trypsin inhibitor from soybean. Science 101 : 668-669 https://doi.org/10.1126/science.101.2635.668
  17. Lievens, S., Goormachtig, S., and Holsters, M. 2004. Noduleenhanced protease inhibitor gene: emerging patterns of gene expression in nodule development on Sesbania rostrata. J. Exp. Bot. 55(394) : 89-97 https://doi.org/10.1093/jxb/erh015
  18. Limpens, E., Mirabella, R., Fedorova, E., Franken, C., Franssen, H., Bisseling, T., and Geurts, R. 2005. Formation of organellelike N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc. Natl. Acad. Sci. USA 102 : 10375-10380 https://doi.org/10.1073/pnas.0504284102
  19. Manen, J. -F., Simon, P., Van Slooten, J. -C., Osteras, M., Frutiger, S., and Hughes, G. J. 1991. A nodulin expressed in senescent nodules of winged bean is a protease inhibitor. Plant Cell 3 : 259-270 https://doi.org/10.1105/tpc.3.3.259
  20. Matsubayashi, Y., Yang, H., and Sakagami, Y. 2001. Peptide signals and their receptors in higher plants. Trends in Plant Sci. 6(12) : 573-7 https://doi.org/10.1016/S1360-1385(01)02148-3
  21. McManus, M. T. and Sharp, P. A. 2002. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3 : 737-747 https://doi.org/10.1038/nrg908
  22. Muller, M. and Schmidt, W. 2004. Environmentally Induced Plasticity of Root Hair Development in Arabidopsis. Plant Physiol. 134 : 409-419 https://doi.org/10.1104/pp.103.029066
  23. Nishimura, R., Hayashi, M., Wu, G. J., Kouchi, H., Imaizumi- Anraku, H., Murakami, Y., Kawasaki, S., Akao, S., Ohmori, M., Nagasawa, M., Harada, K., and Kawaguchi, M. 2002. HAR1 mediates systemic regulation of symbiotic organ development. Nature. 420 : 426-429 https://doi.org/10.1038/nature01231
  24. Ott, T., van Dongen, J. T., Gunther, C., Krusell, L., Desbrosses, G., Vigeolas, H., Bock, V., Czechowski, T., Geigenberger, P., and Udvardi, M. K. 2005. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr. Biol. 15 : 531-535 https://doi.org/10.1016/j.cub.2005.01.042
  25. Rolfe, B. G., Mathesius, U., Djordjevic, M., Weinman, J., Hocart, C., Weiller, G., and Bauer, W. D. 2003. Proteomic analysis of legume-microbe interactions. Comparative and Functional Genomics 4 : 225-228 https://doi.org/10.1002/cfg.263
  26. Searle, I. R., Men, A. E., Laniya, T. S., Buzas, D. M., Iturbe-Ormaetxe, I., Carroll, B. J., and Gresshoff, P. M. 2003. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299 : 109-112 https://doi.org/10.1126/science.1077937
  27. Udvardi, M. K. and Day, D. A. 1997. Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 : 493-523 https://doi.org/10.1146/annurev.arplant.48.1.493
  28. Vasse, J., de Billy, F., Camut, S., and Truchet, G. 1990. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol. 172(8): 4295-4306 https://doi.org/10.1128/jb.172.8.4295-4306.1990
  29. Waterhouse, P. M. and Helliwell, C. A. 2003. Exploring plant genomes by RNA-induced gene silencing. Nature. 4 : 29-38 https://doi.org/10.1038/004029a0
  30. Westfall, R. J. and Hauge, S. M. 1948. The Nutritive Quality and the Trypsin Inhibitor Content of Soybean Flour Heated at Various Temperatures: Two Figures J. Nutr. 35 : 379-389 https://doi.org/10.1093/jn/35.3.379
  31. 안진흥, 남홍길. 1999. 식물분자생물학연구법. 아카데미서적. pp. 97-114