Electricity Generation Coupled with Wastewater Treatment Using a Microbial Fuel Cell Composed of a Modified Cathode with a Ceramic Membrane and Cellulose Acetate Film

  • Seo, Ha-Na (Department of Biological Engineering, Seokyeong University) ;
  • Lee, Woo-Jin (Department of Biological Engineering, Seokyeong University) ;
  • Hwang, Tae-Sik (Department of Biological Engineering, Seokyeong University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Published : 2009.09.30

Abstract

A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99% of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99% similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

Keywords

References

  1. Arnold, E. G., L. S. Clesceri, and A. D. Eaton (eds.). 1992. Standard Methods for the Examination of Water and Wastewater, 18th Ed. American Public Health Association, NW Washington, DC
  2. Biffinger, J. C., J. N. Byrd, B. L. Dudley, and B. R. Ringeisen. 2008. Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens. Bioelectr. 23: 820-826 https://doi.org/10.1016/j.bios.2007.08.021
  3. Chang, R. 1977. Physical Chemistry with Applications to Biological Systems, 2nd Ed. pp. 271-298. Macmillan Publishing Co., Inc. New York
  4. Chaudhuri, S. K. and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232 https://doi.org/10.1038/nbt867
  5. Cheng, S. and B. E. Logan. 2007. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun. 9: 492-496 https://doi.org/10.1016/j.elecom.2006.10.023
  6. Clauwaert, P., K. Rabaey, P. Aelterman, L. DeSchanmphelaire, T. H. Pham. P. Boecks, N. Boon, and W. Verstraete. 2007. Biological denitrification in microbial fuel cells. Environ. Sci. Technol. 41: 3354-3360 https://doi.org/10.1021/es062580r
  7. Mota, C., M. A. Head, J. A. Ridenoure, J. J. Cheng, and F. L. de los Reyes III. 2005. Effects of aeration cycles on nitrifying bacterial populations and nitrogen removal in intermittently aerated reactors. Appl. Environ. Microbiol. 71: 8565-8572 https://doi.org/10.1128/AEM.71.12.8565-8572.2005
  8. Fan, Y., H. Hu, and H. Liu. 2007. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J. Power Source 171: 348-354 https://doi.org/10.1016/j.jpowsour.2007.06.220
  9. Freguia, S., K. Rabaey, Z. Yuan, and J. Keller. 2007. Noncatalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochem. Act. 53: 598-603 https://doi.org/10.1016/j.electacta.2007.07.037
  10. Freguia, S., K. Rabaey, Z. Yuan, and J. Keller. 2008. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res. 42: 1387-1396 https://doi.org/10.1016/j.watres.2007.10.007
  11. Jang, J. K., T. H. Pham, I. S. Chang, K. H. Kang, H. Moon. K. S. Cho, and B. H. Kim. 2004. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Proc. Biochem. 39: 1007-1012 https://doi.org/10.1016/S0032-9592(03)00203-6
  12. Jia, Y. H., H. T. Tran, D. H. Kim, S. J. Oh, D. H. Park, R. H. Zhang, and D. H. Ahn. 2008. Simultaneous organic removal and bio-electrochemical denitrification in microbial fuel cells. Bioprocess Biosyst. Eng. 31: 315-321 https://doi.org/10.1007/s00449-007-0164-6
  13. Kim, J. R., J. Dec, M. A. Bruns, and B. E. Logan. 2008. Removal of odors from swine wastewater by using microbial fuel cells. Appl. Environ. Microbiol. 74: 2540-2543 https://doi.org/10.1128/AEM.02268-07
  14. Kuhl, M. and B. B. Jorgensen. 1992. Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl. Environ. Microbiol. 58: 1164-1174
  15. Lawrence, F. R., D. R. Korber, B. D. Hoyle, J. W. Costerton, and D. E. Caldwell. 1991. Optical sectioning of microbial biofilms. J. Bacteriol. 173: 6558-6567
  16. Lowy, D. A. and L. M. Tender. 2008. Harvesting energy from the marine sediment-water interface III: Kinetic activity of quinineand antimony-based anode materials. J. Power Source 185: 70-75 https://doi.org/10.1016/j.jpowsour.2008.06.079
  17. Lowy, D. A., L. M. Tender, J. G. Zeikus, D. H. Park, and D. R. Lovely. 2006. Harvesting energy from the marine sedimentwater interface II: Kinetic activity of anode materials. Biosens. Bioelectr. 21: 2058-2063 https://doi.org/10.1016/j.bios.2006.01.033
  18. Min, B. and I. Angelidaki. 2008. Innovative microbial fuel cell for electricity production from anaerobic reactors. J. Power Sources 180: 641-647 https://doi.org/10.1016/j.jpowsour.2008.01.076
  19. Min, B., J. R. Kim, S. Oh, J. M. Regan, and B. E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39: 4961-4968 https://doi.org/10.1016/j.watres.2005.09.039
  20. Moon, H., I. S. Chang, and B. H. Kim. 2006. Continuous electricity production from artificial wastewater using a mediatorless microbial fuel cell. Bioresource Technol. 97: 621-627 https://doi.org/10.1016/j.biortech.2005.03.027
  21. Moon, H., I. S. Chang, J. K. Jang, and B. H. Kim. 2005. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochem. Eng. J. 27: 59-65 https://doi.org/10.1016/j.bej.2005.02.010
  22. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700
  23. Na, B. K., B. I. Sang, D. W. Park, and D. H. Park. 2005. Influence of electric potential on structure and function of biofilm in wastewater treatment reactor: Bacterial oxidation of organic carbons coupled to bacterial denitrification. J. Microbiol. Biotechnol. 15: 1221-1228
  24. Park, D. H. and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292-1297 https://doi.org/10.1128/AEM.66.4.1292-1297.2000
  25. Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61 https://doi.org/10.1007/s00253-002-0972-1
  26. Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotech. Bioeng. 81: 348-355 https://doi.org/10.1002/bit.10501
  27. Park, D. H., S. K. Kim, I. H. Shin, and Y. J. Jung. 2000. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotech. Lett. 22: 1301-1304 https://doi.org/10.1023/A:1005674107841
  28. Park, D. H., W. M. Lee, S. J. Jeon, and J. S. Rhee. 2003. Electricity production coupled to bacterial oxidation of organic compounds of sediments isolated from riverbed of Anyangcheon: Simulation for removal of organic compounds from sediment of water stream. J. Kor. Soc. Environ. Anal. 6: 29-34
  29. Park, D. H., Y. K. Park, and E. S. Choi. 2004. Application of single-compartment bacterial fuel cell (SCBFC) using modified electrodes with metal ions to wastewater treatment reactor. J. Microbiol. Biotechnol. 14: 1120-1128
  30. Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85
  31. Princic, A., I. Mahne, F. Megusar, E. A. Paul, and J. M. Tiedje. 1988. Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl. Environ. Microbiol. 64: 3584-3590
  32. Rabaey, K., N. Boon, S. D. Sicilano, M. Verhaege, and W. Verstraete. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70: 5373-5382 https://doi.org/10.1128/AEM.70.9.5373-5382.2004
  33. Rismani-Yazdi, H., S. M. Carver, A. D. Christy, O. H. Tuovinen. 2008. Cathodic limitations in microbial fuel cells: An overview. J. Power Sources 180: 683-694 https://doi.org/10.1016/j.jpowsour.2008.02.074
  34. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  35. Sawyer, B., G. Elenbogen, K. C. Rao, P. O'Brien, and C. Lue- Hing. 1993. Bacterial aerosol emission rates from municipal wastewater aeration tanks. Appl. Environ. Microbiol. 59: 3183- 3186
  36. Shin, I. H., S. J. Jeon, H. S. Park, and D. H. Park. 2004. Catalytic oxidoreduction of pyruvate/lactate and acetaldehyde/ ethanol coupled to electrochemical oxidoreduction of $NAD^{+}$/ NADH. J. Microbiol. Biotechnol. 14: 540-546
  37. Wakelin, S. A., M. J. Colloff, and R. S. Kookana. 2008. Effect of wastewater treatment plant effluent on microbial function and community structure in the sediment of a freshwater stream with variable seasonal flow. Appl. Environ. Microbiol. 74: 2659-2668 https://doi.org/10.1128/AEM.02348-07
  38. Wang, K., S. McDermid, J. Li, N. Kremliakova, P. Kozak, C. Song, Y. Tang, J. Zhang, and J. Zhang. 2008. Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells. J. Power Sources 184: 99-103 https://doi.org/10.1016/j.jpowsour.2008.06.008
  39. Zhao, F., F. Harmisch, U. Schr$\ddot{o}$der, F. Scholz, P. Bogdanoff, and I. Herrmann. 2005. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Comm. 7: 1405-1410 https://doi.org/10.1016/j.elecom.2005.09.032
  40. Zuo, Y., D. Xing, J. M. Regan, and B. E. Logan. 2008. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol. 74: 3130-3137 https://doi.org/10.1128/AEM.02732-07