Novel Alkali-Stable, Cellulase-Free Xylanase from Deep-Sea Kocuria sp. Mn22

  • Li, Chanjuan (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Hong, Yuzhi (College of Plant Science and Technology, Huazhong Agricultural University) ;
  • Shao, Zongze (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State of Oceanic Administration) ;
  • Lin, Ling (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Huang, Xiaoluo (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Liu, Pengfu (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Wu, Gaobing (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Meng, Xin (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Liu, Ziduo (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
  • Published : 2009.09.30

Abstract

A novel xylanase gene, Kxyn, was cloned from Kocuria sp. Mn22, a bacteria isolated from the deep sea of the east Pacific. Kxyn consists of 1,170 bp and encodes a protein of 390 amino acids that shows the highest identity (63%) with a xylanase from Thermohifida fusca YX. The mature protein with a molecular mass of approximately 40 kDa was expressed in Escherichia coli BL21 (DE3). The recombinant Kxyn displayed its maximum activity at $55^{\circ}C$ and at pH 8.5. The $K_m,\;V_{max}$, and $k_{cat}$ values of Kxyn for birchwood xylan were 5.4 mg/ml, $272{\mu}mol/min{\cdot}mg$, and 185.1/s, respectively. Kxyn hydrolyzed birchwood xylan to produce xylobiose and xylotriose as the predominant products. The activity of Kxyn was not affected by $Ca^{2+},\;Mg^{2+},\;Na^+,\;K^+$, ${\beta}$-mercaptoethanol, DTT, or SDS, but was strongly inhibited by $Hg^{2+},\;Cu^{2+},Zn^{2+}$, and $Pb^{2+}$. It was stable over a wide pH range, retaining more than 80% activity after overnight incubation at pH 7.5-12. Kxyn is a cellulase-free xylanase. Therefore, these properties make it a candidate for various industrial applications.

Keywords

References

  1. Ali, M. K., F. B. Rudolph, and G. N. Bennett. 2004. Thermostable xylanase10B from Clostridium acetobutylicum ATCC824. J. Ind. Microbiol. Biotechnol. 31: 229-234
  2. Cazemier, A. E., J. C. Verdoes, A. J. van Ooyen, and H. J. Op den Camp. 1999. Molecular and biochemical characterization of two xylanase-encoding genes from Cellulomonas pachnodae. Appl. Environ. Microbiol. 65: 4099-4107
  3. Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23 https://doi.org/10.1016/j.femsre.2004.06.005
  4. Decelle, B., A. Tsang, and R. K. Storms. 2004. Cloning, functional expression and characterization of three Phanerochaete chrysosporium endo-1, 4-beta-xylanases. Curr. Genet. 46: 166- 175
  5. Gupta, N., V. S. Reddy, S. Maiti, and A. Ghosh. 2000. Cloning, expression, and sequence analysis of the gene encoding the alkalistable, thermostable endoxylanase from alkalophilic, mesophilic Bacillus sp. strain NG-27. Appl. Environ. Microbiol. 66: 2631- 2635 https://doi.org/10.1128/AEM.66.6.2631-2635.2000
  6. Hou, Y. H., T. H. Wang, H. Long, and H. Y. Zhu. 2006. Novel cold-adaptive Penicillium strain FS010 secreting thermo-labile xylanase isolated from yellow sea. Acta Biochim. Biophys. Sin. (Shanghai) 38: 142-149 https://doi.org/10.1111/j.1745-7270.2006.00135.x
  7. Hu, Y., G. Zhang, A. Li, J. Chen, and L. Ma. 2008. Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach. Appl. Microbiol. Biotechnol. 80: 823-830 https://doi.org/10.1007/s00253-008-1636-6
  8. Jun, H., Y. Bing, K. Zhang, X. Ding, and C. Daiwen. 2008. Expression of a Trichoderma reesei beta-xylanase gene in Escherichia coli and activity of the enzyme on fiber-bound substrates. Protein. Expr. Purif. [In Press.]
  9. Kimura, T., H. Suzuki, H. Furuhashi, T. Aburatani, K. Morimoto, S. Karita, K. Sakka, and K. Ohmiya. 2000. Molecular cloning, overexpression, and purification of a major xylanase from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 64: 2734- 2738 https://doi.org/10.1271/bbb.64.2734
  10. Kleine, J. and W. Liebl. 2006. Comparative characterization of deletion derivatives of the modular xylanase XynA of Thermotoga maritima. Extremophiles 10: 373-381 https://doi.org/10.1007/s00792-006-0509-0
  11. Krishna, P., A. Arora, and M. S. Reddy. 2008. An alkaliphilic and xylanolytic strain of actinomycetes Kocuria sp. RM1 isolated from extremely alkaline bauxite residue sites. World J. Microbiol. Biotechnol. 24: 3079-3085 https://doi.org/10.1007/s11274-008-9801-8
  12. Lee, C. C., M. Smith, R. E. Kibblewhite-Accinelli, T. G. Williams, K. Wagschal, G. H. Robertson, and D. W. Wong. 2006. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr. Microbiol. 52: 112-116 https://doi.org/10.1007/s00284-005-4583-9
  13. Li, N., K. Meng, Y. Wang, P. Shi, H. Luo, Y. Bai, P. Yang, and B. Yao. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl. Microbiol. Biotechnol. 80: 231-240 https://doi.org/10.1007/s00253-008-1533-z
  14. Li, N., P. Yang, Y. Wang, H. Luo, K. Meng, N. Wu, Y. Fan, and B. Yao. 2008. Cloning, expression, and characterization of protease-resistant xylanase from Streptomyces fradiae var. K11. J. Microbiol. Biotechnol. 18: 410-416
  15. Lo Leggio, L., S. Kalogiannis, M. K. Bhat, and R. W. Pickersgill. 1999. High resolution structure and sequence of T. aurantiacus xylanase I: Implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta) alpha-barrel architecture. Proteins 36: 295-306 https://doi.org/10.1002/(SICI)1097-0134(19990815)36:3<295::AID-PROT4>3.0.CO;2-6
  16. Maalej, I., I. Belhaj, N. F. Masmoudi, and H. Belghith. 2008. Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: Purification and characterization. Appl. Biochem. Biotechnol. [In Press.]
  17. Manikandan, K., A. Bhardwaj, N. Gupta, N. K. Lokanath, A. Ghosh, V. S. Reddy, and S. Ramakumar. 2006. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: Structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Protein Sci. 15: 1951-1960 https://doi.org/10.1110/ps.062220206
  18. Manimaran, A., K. S. Kumar, K. Permaul, and S. Singh. 2009. Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching. Appl. Microbiol. Biotechnol. 81: 887-893 https://doi.org/10.1007/s00253-008-1693-x
  19. Nakamura, S., K. Wakabayashi, R. Nakai, R. Aono, and K. Horikoshi. 1993. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl. Environ. Microbiol. 59: 2311-2316
  20. Ninawe, S., M. Kapoor, and R. C. Kuhad. 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresour. Technol. 99: 1252-1258 https://doi.org/10.1016/j.biortech.2007.02.016
  21. Perez-Avalos, O., L. M. Sanchez-Herrera, L. M. Salgado, and T. Ponce-Noyola. 2008. A bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in industrial processes at different pH. Curr. Microbiol. 57: 39-44 https://doi.org/10.1007/s00284-008-9149-1
  22. Polizeli, M. L., A. C. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591 https://doi.org/10.1007/s00253-005-1904-7
  23. Raghukumar, C., U. Muraleedharan, V. R. Gaud, and R. Mishra. 2004. Xylanases of marine fungi of potential use for biobleaching of paper pulp. J. Ind. Microbiol. Biotechnol. 31: 433-441 https://doi.org/10.1007/s10295-004-0165-2
  24. Ratanachomsri, U., R. Sriprang, W. Sornlek, B. Buaban, V. Champreda, S. Tanapongpipat, and L. Eurwilaichitr. 2006. Thermostable xylanase from Marasmius sp.: Purification and characterization. J. Biochem. Mol. Biol. 39: 105-110 https://doi.org/10.5483/BMBRep.2006.39.1.105
  25. Sakka, K., Y. Kojima, T. Kondo, S. Karita, K. Ohmiya, and K. Shimada. 1993. Nucleotide sequence of the Clostridium stercorarium xynA gene encoding xylanase a: Identification of catalytic and cellulose binding domains. Biosci. Biotechnol. Biochem. 57: 273-277 https://doi.org/10.1271/bbb.57.273
  26. Teplitsky, A., A. Mechaly, V. Stojanoff, G. Sainz, G. Golan, H. Feinberg, et al. 2004. Structure determination of the extracellular xylanase from Geobacillus stearothermophilus by selenomethionyl mad phasing. Acta Crystallogr. D Biol. Crystallogr. 60: 836-848 https://doi.org/10.1107/S0907444904004123
  27. Umemoto, H., Ihsanawati, M. Inami, R. Yatsunami, T. Fukui, T. Kumasaka, N. Tanaka, and S. Nakamura. 2007. Contribution of salt bridges to alkaliphily of Bacillus alkaline xylanase. Nucleic Acids Symp. Ser. (Oxf) 51: 461-462 https://doi.org/10.1093/nass/nrm231
  28. Winterhalter, C. and W. Liebl. 1995. Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl. Environ. Microbiol. 61: 1810-1815
  29. Wood, P. J., J. D. Erfle, and R. M. Teather. 1988. Use of complex formation between Congo red and polysaccharide in detection and assay of polysaccharide hydrolases. Methods Enzymol. 160: 59-74 https://doi.org/10.1016/0076-6879(88)60107-8
  30. Wu, S., B. Liu, and X. Zhang. 2006. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. Mt-1 in east Pacific. Appl. Microbiol. Biotechnol. 72: 1210-1216 https://doi.org/10.1007/s00253-006-0416-4
  31. Xie, H., H. J. Gilbert, S. J. Charnock, G. J. Davies, M. P. Williamson, P. J. Simpson, et al. 2001. Clostridium thermocellum Xyn10B carbohydrate-binding module 22-2: The role of conserved amino acids in ligand binding. Biochemistry 40: 9167-9176 https://doi.org/10.1021/bi0106742
  32. Zhao, J., X. Li, and Y. Qu. 2006. Application of enzymes in producing bleached pulp from wheat straw. Bioresour. Technol. 97: 1470-1476 https://doi.org/10.1016/j.biortech.2005.07.012