생분해성을 갖는 초다공성 수화젤의 제조 및 특성분석

Preparation and Characterization of Biodegradable Superporous Hydrogels

  • 육군영 (충남대학교 고분자공학과) ;
  • 최유미 (충남대학교 고분자공학과) ;
  • 박정숙 (충남대학교 약학대학) ;
  • 김소연 (충남대학교 공업교육학부) ;
  • 박기남 (퍼듀대학교 약학대학) ;
  • 허강무 (충남대학교 고분자공학과)
  • Yuk, Kun-Young (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Choi, You-Mee (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Park, Jeong-Sook (College of Pharmacy, Chungnam National University) ;
  • Kim, So-Yeon (Division of Engineering Education, College of Engineering, Chungnam National University) ;
  • Park, Ki-Nam (Purdue University, Departments of Pharmaceutics and Biomedical Engineering, School of Pharmacy) ;
  • Huh, Kang-Moo (Department of Polymer Science and Engineering, Chungnam National University)
  • 발행 : 2009.09.25

초록

본 연구에서는 속팽윤성과 고흡수성을 갖는 초다공성 수화젤의 제조과정에서 생분해성 가교제를 이용하여 생분해성 초다공성 수화젤을 제조하고 특성분석을 수행하였다. 친수성 고분자인 poly(ethylene glycol)의 양말단에 D,L-lactide를 개환 중합시켜 PLA-PEG-PLA 삼중공중합체를 합성한 뒤, 양말단에 비닐기를 도입하여 생분해성 가교제를 합성하였다. 조성이 다양한 초다공성 수화젤을 제조하여 각각의 팽윤도, 팽윤속도 및 생분해성을 비교하였다. 중합된 고분자의 화학적 조성을 $^1H$-NMR, GPC, FT-IR 측정을 통해 확인하였고, 수화젤 표면 및 내부의 SEM 분석을 통해 수 백 ${\mu}m$ 크기의 공극들로 생성된 열린 채널구조의 초다공성 구조를 관찰하였다. 수은 다공도계로 수화절의 기공크기와 다공도를 측정하였고, 조성에 따라 물리회학적 성질이 조절될 수 있음을 알 수 있었으며, MTT분석에 의해 낮은 세포독성을 나타냄을 확인하였다.

In this study, biodegradable superporous hydrogels(SPHs) with fast swelling and superabsorbent properties were prepared using biodegradable crosslinkers and their physicochemical properties were characterized. A biodegradable crosslinker (PLA-PEG-PLA DA) was synthesized by a ring opening polymerization of D,L-lactide (LA) using hydrophilic poly(ethylene glycol) as a macroinitiator, followed by diacrylation of the end groups for the introduction of polymerizable vinyl groups. Various kinds of hydrogels with different chemical compositions were prepared and characterized in terms of swelling ratio, swelling kinetics, and biodegradation properties. The synthetic results were confirmed by $^1H$-NMR, FT-IR and GPC measurements, and the porous structures of the prepared SPHs and their porosities were identified by a scanning electron microscope and mercury porosimetry, respectively. The physicochemical properties of SPHs could be controlled by varying their chemical compositions and their cytotoxicity were found to be very low by MTT assay.

키워드

참고문헌

  1. K. Park, W. S. W. Shalaby, and H. Park, Biodegradable hydrogels for drug delivery, Technomic Publishing Co., Lancaster, 1993
  2. H. Omidian, J. G. Rocca, and K. Park, J. Control. Release, 102, 3 (2005) https://doi.org/10.1016/j.jconrel.2004.09.028
  3. K. M. Huh, N. Baek, and K. Park, J. Bioact. Compat. Pol., 20, 231 (2005) https://doi.org/10.1177/0883911505053378
  4. K. Kabiri, H. Omidian, S. A. Hashemi, and M. J. Zohuriaan-Mehr, Eur. Polym. J., 39, 1341 (2003) https://doi.org/10.1016/S0014-3057(02)00391-9
  5. N. Kato and S. H. Gehrke, Colloids Surf. B: Biointerfaces, 38, 191 (2004) https://doi.org/10.1016/j.colsurfb.2004.01.018
  6. K. Park and H. Park, U.S. Patent 5,352,448 (1998)
  7. J. Chen, H. Park, and K. Park, Biomed. Mater. Res., 44, 53 (1999) https://doi.org/10.1002/(SICI)1097-4636(199901)44:1<53::AID-JBM6>3.0.CO;2-W
  8. S. K. Bajpai, M. Bajpai, and L. Sharma, J. Macromol. Sci. Pure Appl. Chem., 43, 507 (2006) https://doi.org/10.1080/10601320600575249
  9. K. L. Spiller, S. J. Laurencin, D. Charlton, S. A. Maher, and A. M. Lowman, Acta Biomat., 4, 17 (2008) https://doi.org/10.1016/j.actbio.2007.09.001
  10. K. Kabiri and M. J. Zohuriaan-Mehr, Macromol. Mater. Eng., 289, 653 (2004) https://doi.org/10.1002/mame.200400010
  11. L. Yin, L. Fei, F. Cui, C. Tang, and C. Yin, Biomaterials, 28, 1258 (2007) https://doi.org/10.1016/j.biomaterials.2006.11.008
  12. H. Omidian, J. G. Rocca, and K. Park, Macromol. Biosci., 6, 703 (2006) https://doi.org/10.1002/mabi.200600062
  13. K. Park, Drug Deliv. Technol., 2(5), July/August (2002)
  14. J. Chen, W. E. Blevins, H. Park, and K. Park, J. Control. Release, 64, 39 (2000) https://doi.org/10.1016/S0168-3659(99)00139-X
  15. F. A. Dorkoosh, J. C. Verhoef, G. Borchad, M. Rafiee-Tehrani, J. H. M. Verheijden, and H. E. Junginger, Int. J. Pharm., 247, 47 (2002) https://doi.org/10.1016/S0378-5173(02)00361-7
  16. S. J. Im, Y. M. Choi, E. Subramanyam, K. M. Huh, and K. Park, Macromol. Res., 15, 363 (2007) https://doi.org/10.1007/BF03218800
  17. J. H. Ha, S. H. Kim, S. Y. Han, Y. K. Sung, Y. M. Lee, I. K. Kang, and C. S. Cho, J. Control. Release, 49, 253 (1997) https://doi.org/10.1016/S0168-3659(97)00096-5
  18. W. E. Hennink and C. F. van Nostrum, Adv. Drug Deliver. Rev., 54, 13 (2002) https://doi.org/10.1016/S0169-409X(01)00240-X
  19. J. H. Im, Y. Lee, and K. M. Huh, Polymer(Korea), 32, 143 (2008)
  20. G. He, L. L. Ma, J. Pan, and S. Venkatraman, Int. J. Pharm., 334, 48 (2007) https://doi.org/10.1016/j.ijpharm.2006.10.020
  21. L. M. Geever, C. C. Cooney, J. G. Lyons, J. E. Kennedy, M. J. D. Nugent, S. Devery, and C. L. Higginbotham, Eur. J. Pharm. Biopharm., 69, 1147 (2008) https://doi.org/10.1016/j.ejpb.2007.12.021