PEDOT-PSS/NPD-$C_{60}$ 정공 주입/수송 층이 도입된 유기발광소자의 성능 향상 연구

Enhanced Efficiency of Organic Electroluminescence Diode Using PEDOT-PSS/NPD-$C_{60}$ Hole Injection/Transport Layers

  • Park, Kyeong-Nam (Department of Chemical Engineering, Pusan National University) ;
  • Kang, Hak-Su (Department of Chemical Engineering, Pusan National University) ;
  • Senthilkumar, Natarajan (Department of Chemical Engineering, Pusan National University) ;
  • Park, Dae-Won (Department of Chemical Engineering, Pusan National University) ;
  • Choe, Young-Son (Department of Chemical Engineering, Pusan National University)
  • 발행 : 2009.09.25

초록

유기발광소자(OLED)에서 정공 수송층(hole injection layer, HIL)으로 사용되는 N,N'-di-1-naphthyl-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD)가 정공 주입층(hole injection layer HIL)으로 사용된 PEDOT-PSS 층 위로 진공 증착되었다. PEDOT-PSS 층은 ITO 유리 위에 스핀 코팅되어 제조되었다. 또한, NPD와 $C_{60}$의 공증착에 의해 $C_{60}$이 약 10 wt% 도핑된 NPD-$C_{60}$ 층을 제조하였으며, AFM과 XRD를 이용하여 NPD-$C_{60}$ 박막의 모폴로지 특성을 관찰하였다. 다층 소자를 제조하여 J-Y, L-V 및 전류 효율 특성이 고찰되었다. $C_{60}$박막은 국부적인 결정성 구조를 가지고 있으나, NPD-$C_{60}$ 박막에서는 $C_{60}$ 분자가 균일하게 분산되어 $C_{60}$의 결정성 구조가 확인되지 않았다. 또한, $C_{60}$의 도핑에 의해서 박막의 표면이 균일해지는 것을 확인하였으며, 박막 내의 전류 밀도가 증가됨을 확인하였다. NPD-$C_{60}$ 박막을 이용하여 ITO/PEDOT-PSS/NPD-$C_{60}/Alq_3$/LiF/Al 다층 소자를 제조하였을 때, 소자의 휘도 측면에서 약 80% 향상 효과가 있었으며, 소자 효율 측면에서도 약 25%의 향상을 기대할 수 있었다.

Vacuum deposited N,N-di-1-naphthyl-N,N-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD) as a hole transporting (HTL) materials in OLEDs was placed on PEDOT-PSS, a hole injection layer (HIL). PEDOT-PSS was spin-coated on to the ITO glass. $C_{60}$-doped NPD-$C_{60}$(10 wt%) film was formed via co-evaporation process and the morphology of NPD-$C_{60}$ films was investigated using XRD and AFM. The J - V, L - V and current efficiency of multi -layered devices were characterized. According to XRD results, the deposited $C_{60}$ thin film was partially crystalline, but NPD-$C_{60}$ film was observed not to be crystalline, which indicates that $C_{60}$ molecules are uniformly dispersed in the NPD film. By using $C_{60}$-doped NPD-$C_{60}$ film as a HTL, the current density and luminance of multi-layered ITO/PEDOT-PSS/NPD-$C_{60}/Alq_3$/LiF/Al device were significantly increased by about 80% and its efficiency was improved by about 25% in this study.

키워드

참고문헌

  1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987) https://doi.org/10.1063/1.98799
  2. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E.Thompson, and S. R. Forrest, Nature(London), 395, 151 (1998) https://doi.org/10.1038/25954
  3. B. P. Rand, J. Xue, S. Uchida, and S. R. Forrest, Appl. Phys. Lett., 98, 124902 (2005)
  4. S. E. Shaheen, C. J. Brabec, and N. S. Sariciftci, Appl. Phys. Lett., 78, 841 (2001) https://doi.org/10.1063/1.1345834
  5. S. M. Schultes, P. Sullivan, S. Heutz, B. M. Sanderson, and T. S. Jones, Mater. Sci. Eng. C, 25, 858 (2005) https://doi.org/10.1016/j.msec.2005.06.039
  6. J. Drechsel, B. Mannig, F. Kozlowski, D. Gebeyehu, A. Werner, M. Koch, K. Leo, and M. Pfeiffer, Thin Solid Films, 451, 515 (2004) https://doi.org/10.1016/j.tsf.2003.11.044
  7. D. Gebeyehu, B. Maennig, J. Drechsel, K. Leo, and M. Pfeiffer, Sol. Energy Mater. Sol. Cells, 79, 81 (2003) https://doi.org/10.1016/S0927-0248(02)00369-0
  8. V. Tripathi, D. Datta, G. S. Samal, A. Awasthi, and S. Kumar, J. Non-Cryst. Sol., 354, 2901 (2008) https://doi.org/10.1016/j.jnoncrysol.2007.10.098
  9. J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, Appl. Phys. Lett., 98, 124903 (2005)
  10. G. Hadziioannou and P. F. van Hutten, Editors, Semiconducting Polymers: Chemistry, Physics and Engineering, Wiley-VCH, Verlag GmbH, Weinheim(Federal Republic of Germany), 2000
  11. G. Yu, J. Gao, J. C. Hummelene, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995) https://doi.org/10.1126/science.270.5243.1789
  12. P. Peumans, V. Bulovi? and S. R. Forrest, Appl. Phys. Lett., 76, 2650 (2000) https://doi.org/10.1063/1.126433
  13. P. L. Burn, D. D. C. Bradley, R. H. Friend, D. A. Halliday, A. B. Holmes, R. W. Jackson, and A. Kraft, J. Chem. Soc., 1, 3225 (1992)
  14. S. H. Askari, S. D. Rughooputh, and F. Wudl, Synth. Met., 29, 129 (1989)
  15. K. L. Brandon, P. G. Bently, D. D. C. Bradley, and D. A, Dunmur, Synth. Met., 91, 305 (1997) https://doi.org/10.1016/S0379-6779(98)80047-7
  16. E. S. Jung, E.-H. Cho, and P.-J. Chung, J. Korean Ind. Eng. Chem., 9, 548 (1998)
  17. M. M. El-Nahass, Z. El-Gohary, and H. S. Soliman, Opt. Laser Tech., 35, 523 (2003) https://doi.org/10.1016/S0030-3992(03)00068-9
  18. Y. Yuan, D. Grozea, and Z. H. Lua, J. Appl. Phys., 86, 143509 (2005)
  19. K. P. Khrishnakumar and C. S. Menon, Mater. Lett., 48, 64 (2001) https://doi.org/10.1016/S0167-577X(00)00281-0
  20. S. Yanagiya, S. Nishikata, G. Sazaki, A. Hoshino, K. Nakajima, and T. Inoue, J. Cryst. Growth., 254, 244 (2003) https://doi.org/10.1016/S0022-0248(03)01098-4
  21. F. Padinger, R. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater., 13, 85 (2003) https://doi.org/10.1002/adfm.200390011
  22. J. J. Dittmer, R. Lazzaroni, P. Leclere, P. Moretti, M. Granstrom, K. Petritsch, E. A. Marseglia, R. H. Friend, J. L. Bredas, H. Rost, and A. B. Holmes, Sol. Energy Mater. Sol. Cells, 61, 53 (2000) https://doi.org/10.1016/S0927-0248(99)00096-3
  23. W. Geens, T. Aernouts, J. Poortmans, and G. Hadziioannou, Thin Solid Films, 438, 403 (2002) https://doi.org/10.1016/S0040-6090(03)00788-0
  24. W. Geens, S. E. Shaheen, B. Wessling, C. J. Brabec, J. Poortmans, and N. S. Sariciftci, Org. Electron., 3, 105 (2002) https://doi.org/10.1016/S1566-1199(02)00039-3
  25. T. Martens, J. D’Haen, T. Munters, Z. Beelen, L. Goris, J. Manca, M. D’Olieslaeger, D. Vanderzande, L. De Schepper, and R. Andriessen, Synth. Met., 138, 243 (2003) https://doi.org/10.1016/S0379-6779(02)01311-5
  26. M. Drees, K. Premaratne, W. Graupner, J. R. Heflin, R. M. Davis, D. Marciu, and M. Miller, Appl. Phys. Lett., 81, 4607 (2002) https://doi.org/10.1063/1.1522830
  27. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995) https://doi.org/10.1126/science.270.5243.1789
  28. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, Adv. Mater. (Weinheim,Ger.), 17, 66 (2005) https://doi.org/10.1002/adma.200400617
  29. M. I. Boamfa, P. C. M. Christianen, J. C. Maan, H. Engelkamp, and R. J. M. Nolte, Physcia B, 294, 343 (2001) https://doi.org/10.1016/S0921-4526(00)00674-8
  30. Z. G. Ji, K. W. Wong, P. K. Tse, R. W. M. Kwok, and W. M. Lau, Thin Solid Films, 402, 79 (2002) https://doi.org/10.1016/S0040-6090(01)01702-3
  31. C. Giebeler, H. Antoniadis, Donal D. C. Bradley, and Y. Shirota, J. Appl. Phys., 85, 1608 (1999)
  32. B. J. Chen, X. W. Sun, T. K. S. Wong, X. Hu, and A. Uddin, Appl. Phys. Lett., 84, 063505 (2005)
  33. J. Y. Lee and H. K. Jang, J. Appl. Phys., 88, 183502 (2006) https://doi.org/10.1063/1.2172296
  34. Y. Yuan, S. Han, D. Grozea, and Z. H. Lu, Appl. Phys. Lett., 88, 093603 (2006)
  35. A. Grill, Cold Plasma in Materials Fabrication-From Fundamentals to Applications, John Wiley & Sons, New York, 1994
  36. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Freind, P. L. Burn, and A. B. Holmes, Nature, 347, 539 (1990) https://doi.org/10.1038/347539a0
  37. D. S. Kang and Y. S. Choe, J. Korean Ind. Eng. Chem., 18, 506 (2007)
  38. S. Oh, D. S. Kang, D. W. Park, and Y. S. Choe, Sol. State Phen., 124, 427 (2007) https://doi.org/10.4028/www.scientific.net/SSP.124-126.427
  39. S. Oh, Y. S. Cho, D. W. Park, and Y. S. Choe, Macromol. Sym., 249, 8 (2007) https://doi.org/10.1002/masy.200750302
  40. Y. S. Choe, S. Y. Park, D. W. Park, and W. H. Kim, Macromol. Res., 140, 38 (2006)