방향족 도입에 의한 자외선 경화형 프리즘시트의 휘도 개전

Improvement of Brightness in UV Curing Type Prism Sheet by Using Aromatic Groups

  • 김동열 (충남대학교 공과대학 나노기술학과) ;
  • 김형일 (충남대학교 공과대학 공업화학과)
  • Kim, Dong-Ryoul (Department of Nano Technology, Chungnam National University) ;
  • Kim, Hyung-Il (Department of Industrial Chemistry, Chungnam National University)
  • 발행 : 2009.09.25

초록

프리즘 시트의 프리즘 층 물질의 굴절률을 증가시킬수록 휘도가 향상되어 LCD 백라이트 유닛의 효율이 향상되었다. 프리즘 층의 굴절률을 증가시키기 위해서 방향족을 포함하고 있는 고굴절 물질과 다관능성 반응물을 혼합하여 자외선 경화형 수지를 제조하였다. 9,9-Bis [4-(2-acryloyloxyethoxy)phenyl] fluorene을 반응시켜 프리즘층의 도막 굴절률을 1.58까지 증가시켰고 백라이트의 휘도를 향상시킬 수 있었다. 백라이트 유닛에 사용되는 광원에 장기간 노출될 경우 프리즘 시트에 황변현상이 발생하게 되어 휘도가 감소되므로 자외선 안정제로 hindered amine light stabilizer를 사용하여 프리즘 시트의 내황변성을 크게 향상시켰다.

As the refractive index of the prism layer becomes higher, the optical performance of the prism sheet gets better and the efficiency of the LCD backlight unit is improved. In order to increase the refractive index of the prism layer, the ultraviolet curing type resins were prepared by mixing high refractive index materials containing aromatic groups and the multi-functional reactive diluents. By using 9,9-bis [4-(2-acryloyloxyethoxy)phenyl] fluorene, the refractive index of the prism layer was increased up to 1.58 and the brightness of the backlight unit was improved. Since the light source used in the backlight unit caused the yellowing in the prism sheet and deteriorated the brightness accordingly, the hindered amine light stabilizer was used to improve the yellowing resistance successfully.

키워드

참고문헌

  1. The market trends of Korea display components, p3-5, KETI (2005)
  2. K. S. Lee, The vision & strategy of instrumental industry for the next generation display in 2020s, p61~62, KIET (2007)
  3. C. J. Jung, Polymer(Korea), 10, 570 (1986)
  4. B. H. Lee, J. H. Choi, H. J. Kim, J. I. Kim, and J. Y. Park, J. Ind. Eng. Chem., 10, 608 (2004)
  5. J. W. Yoo and D. S. Kim, Polymer(Korea), 23, 376 (1999)
  6. H. Kaczmarek and C. Decker, J. Appl. Polym. Sci., 54, 2147 (1994) https://doi.org/10.1002/app.1994.070541317
  7. C. Decker and K. Moussa, J. Appl. Polym. Sci., 55, 359 (1995) https://doi.org/10.1002/app.1995.070550218
  8. B. Nabeth, J. F. Gerard, and J. P. Pascault, J. Appl. Polym. Sci., 60, 2113 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960620)60:12<2113::AID-APP8>3.0.CO;2-P
  9. D. S. Kim and J. R. Lee, Polymer(Korea), 18, 199 (1994)
  10. S. C. Jang, S. C. Yi, and J. W. Hong, J. Ind. Eng. Chem., 11, 964 (2005)
  11. D. J. Lee, J. Y. Choi, and H. D. Kim, Journal of Korean Fiber Society, 36, 798 (1999)
  12. H. S. Kim and K. H. Chae, Polymer(Korea), 25, 625 (2001)
  13. H. K. Kim and H. J. Kang, Polymer(Korea), 23, 263 (1999)
  14. C. Decker and K. Zahouity, J. Polym. Sci. Part A: Polym. Chem., 36, 2571 (1998) https://doi.org/10.1002/(SICI)1099-0518(199810)36:14<2571::AID-POLA16>3.0.CO;2-F
  15. S. M. Oh and J. J. Sim, Polymer Science and Technology, 6, 108 (1995)
  16. J. A. Padron, R. Carrasco, and R. F. Pellon, J. Pharm. Sci., 5, 258 (2002)
  17. J. E. Pickett, Technical imformation series, GE research & development center, p4~26 (1997)
  18. J. D. Cho, S. H. Kim, I. C. Chang, K. S. Kim, and J. W. Hong, Macromol. Res., 15, 560 (2007) https://doi.org/10.1007/BF03218831
  19. K. de la Caba, P. Guerrero, M. Del Rio, and I. Mondragon, Constr. Build. Mater., 21, 1288 (2007) https://doi.org/10.1016/j.conbuildmat.2006.02.008