DOI QR코드

DOI QR Code

Metabolism of Soyasaponin I by Human Intestinal Microflora and Its Estrogenic and Cytotoxic Effects

  • Chang, Seo-Young (Departments of Food and Nutrition, Kyung Hee University) ;
  • Han, Myung-Joo (Departments of Food and Nutrition, Kyung Hee University) ;
  • Han, Sang-Jun (Departments of Pharmaceutical Science, Life and Nanopharmaceutical Sciences, Kyung Hee University) ;
  • Kim, Dong-Hyun (Departments of Pharmaceutical Science, Life and Nanopharmaceutical Sciences, Kyung Hee University)
  • Published : 2009.10.31

Abstract

Metabolites of Soyasaponin I, a major constituent of soybean, by human intestinal microflora were investigated by LC-MS/MS analysis. We found four peaks, one parental constituent and three metabolites: m/z 941 [M-H]$^-$, m/z 795 [M-rha-H]$^-$, m/z 441 [aglycone-$H_2O$+H]$^+$, and m/z 633 [M-rha-gal-H]$^-$, which was an unknown metabolite, soyasapogenol B 3-$\beta$-D-glucuronide. When soyasaponin I was incubated with the human fecal microbial fraction from ten individuals for 48 h, soyasaponin I was metabolized to soyasapogenol B via soyasaponin III and soyasapogenol B 3-$\beta$-D-glucuronide or via soyasaponin III alone. Both soyasaponin I and its metabolite soyasapgenol B exhibited estrogenic activity. Soyasaponin I increased the proliferation, mRNA expression of c-fos and pS2, in MCF7 cells more potently than soyasapogenol B. However, soyasapogenol B showed potent cytotoxicity against A549, MCF7, HeLa and HepG2 cells, while soyasaponin I did not. The cytotoxicity of soyasapogenol B may prevent its estrogenic effect from increasing dose-dependently. These findings suggest that orally administered soyasaponin I may be metabolized to soyasapogenol B by intestinal microflora and that soyasapogenol B may express a cytotoxic effect rather than an estrogenic effect.

Keywords

References

  1. Bae, E. A., Choo, M. K., Park, E. K., Park, S. Y., Shin, H. Y. and Kim, D. H. (2003). Metabolism of ginsenoside $R_c$ by human intestinal bacteria and its related antiallergic activity. Biol. Pharm. Bull. 25, 743-747. https://doi.org/10.1248/bpb.25.743
  2. Beck, V., Rohr, U. and Jungbauer, A. (2005). Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy? J. Steroid Biochem. Mol. Biol. 94, 499-518. https://doi.org/10.1016/j.jsbmb.2004.12.038
  3. Boue, S. M., Tilghman, S. L., Elliott, S., Zimmerman, M. C., Williams, K. Y., Payton-Stewart, F., Miraflor, A. P., Howell, M. H., Shih, B. Y., Carter-Wientjes, C. H., Sega, R. C., Beckman, B. S., Wiese, T. E., Cleveland, T. E., McLachlan, J. A. and Burow, M. E. (2009). Identification of the potent phytoestrogen glycinol in elicited soybean (Glycine max). Endocrinology 150, 2446-2453. https://doi.org/10.1210/en.2008-1235
  4. Cheeke, P. R. (1976). Nutritional and physiological properties of saponins. Nutr. Rep. Int. 13, 315-324.
  5. Hu, J., Zheng, Y. L., Hyde, W., Hendrich, S. and Murphy, P. A. (2004). Human fecal metabolism of soyasaponin I. J. Agric. Food. Chem. 52, 2689-2696. https://doi.org/10.1021/jf035290s
  6. Joel, I. and Zhang, G. N. (2008). Soybean bioactive components and their implications to health-A review. Food Rev. International. 24, 252-276. https://doi.org/10.1080/87559120801926351
  7. John, S., Konesh, A., David, Y., Yukio, K., Gauri, M. and Yueming, J. (2004). Saponins from edile legumes: Chemistry, processing, and health benefits. J. Med. Food. 7, 67-78. https://doi.org/10.1089/109662004322984734
  8. Kim, D. H. (2002). Herbal medicines are activated by intestinal microflora. Nat. Prod. Sci. 8, 35-43.
  9. Kim, S. L., Berhow, M. A., Kim, J. T., Chi, H. Y., Lee, S. J. and Chung, I. M. (2006). Evaluation of soyasaponin, isoflavone, protein, lipid, and free sugar accumulation in developing soybean seeds. J. Agric. Food. Chem. 54, 10003-10010. https://doi.org/10.1021/jf062275p
  10. Kitagawa, I., Taniyama, T., Nagahama, Y., Okubo, K., Yamauchi, F. and Yoshikawa, M. (1988). Structure of acetyl-soyasaponin A1, A2 and A3, astringent partially acetylated bisdesmoside of soyasapogenol A form american soybean, the seed of Glycine max MERRILL. Chem. Pharm. Bull. 36, 2819-2828. https://doi.org/10.1248/cpb.36.2819
  11. Kobashi, K. and Akao, T. (1997). Relation of intestinal bacteria to pharmacological effects of glycosides. Biosci. Microflora. 16, 1-7. https://doi.org/10.12938/bifidus1996.16.1
  12. Kudou, S., Tonomura, M., Tsukamoto, C., Shimoyamada, M., Uchida, T. and Okubo, K. (1992). Isolation and structural elucidation of the major genuine soybean saponin. Biosci. Biotechnol. Biochem. 56, 142-143. https://doi.org/10.1271/bbb.56.142
  13. Kudou, S., Tonomura, M., Tsukamoto, C., Uchida, T., Sakabe, T., Tamura, N. and Okubo, K. (1993). Isolation and structural elucidation of DDMP-conjugated soyasaponins as genuine saponins from soybean seeds. Biosci. Biotechnol. Biochem. 57, 546-550. https://doi.org/10.1271/bbb.57.546
  14. Lehmann, L., Esch, H. L., Wagner, J., Rohnstock, L. and Metzler, M. (2005). Estrogenic and genotoxic potential of equol and two hydroxylated metabolites of Daidzein in cultured human Ishikawa cells. Toxicol. Lett. 158, 72-86. https://doi.org/10.1016/j.toxlet.2005.02.011
  15. Messina, J. M., Persky, V., Setchell, K. D. R. and Barnes, S. (1994). Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr. Cancer 21, 113-131. https://doi.org/10.1080/01635589409514310
  16. Messina, M. (1995). Modern applications for an ancient bean: soybeans and the prevention and treatment of chronic disease. J. Nutr. 125, 567S-569S.
  17. Oakenfull, D. (1981). Saponins in food-a review. Food Chem. 6, 19-40. https://doi.org/10.1016/0308-8146(81)90019-4
  18. Okubo, K. I. M. (1992). Components responsible for the undesirable taste of soybean seeds. Biosci. Biotechnol. Biochem. 56, 99-103. https://doi.org/10.1271/bbb.56.99
  19. Park, E. K., Shin, J., Bae, E. A., Lee, Y. C. and Kim, D. H. (2006). Intestinal bacteria activate estrogenic effect of main constituents puerarin and daidzin of Pueraria thunbergiana. Biol. Pharm. Bull. 29, 2432-2435. https://doi.org/10.1248/bpb.29.2432
  20. Potter, J. D., Topping, D. L. and Oakenfull, D. G. (1979). Soya, saponins and plasma cholesterol. Lancet 1, 223-230. https://doi.org/10.1016/S0140-6736(79)90634-2
  21. Price, K. R., Johnson, I. T. and Fenwick, G. R. (1987). The chemistry and biological significance of saponins in food and feeding stuffs. Crit. Rev. Food. Sic. Nutr. 26, 27-135. https://doi.org/10.1080/10408398709527461
  22. Rowlands, J. C., Berhow, M. A. and Badger, T. M. (2002). Estrogenic and antiproliferative properties of soy sapogenols in human breast cancer cells in vitro. Food Chem. Toxicol. 40, 1767-1774. https://doi.org/10.1016/S0278-6915(02)00181-3
  23. Shin, J., Bae, E. A., Lee, Y. C., Ma, J. Y. and Kim, D. H. (2006). Estrogenic effect of main components kakkalide and tectoridin of puerariae flos and their metabolites. Biol. Pharm. Bull. 29, 1202-1206. https://doi.org/10.1248/bpb.29.1202
  24. Shutt, D. A., and Cox, R. I. (1972). Steroid and phyto-estrogen binding to sheep uterine receptors in vitro. J. Endocrinol. 52, 299-310. https://doi.org/10.1677/joe.0.0520299
  25. Tham, D. M., Gardner, C. D. and Haskell, W. L. (1998). Potential health benefits of dietary phytoestrogens: a review of clinical, epidemiological, and mechanistic evidence. J. Clin. Endocrinol. Metab. 83, 2223-2235. https://doi.org/10.1210/jc.83.7.2223
  26. Voigt, W. (2005). Sulforhodamine B assay and chemosensitivity. Methods Mol. Med. 110, 39-48. https://doi.org/10.1385/1-59259-869-2:039

Cited by

  1. Soyasaponin Ab Ameliorates Colitis by Inhibiting the Binding of Lipopolysaccharide (LPS) to Toll-like Receptor (TLR)4 on Macrophages vol.59, pp.24, 2011, https://doi.org/10.1021/jf2033818
  2. Liquid chromatography/mass spectrometry-based structural analysis of soyasaponin Ab metabolites by human fecal microflora vol.52, pp.5, 2010, https://doi.org/10.1016/j.jpba.2010.02.011
  3. Immobilization of Aspergillus terreus on loofa sponge for soyasapogenol B production from soybean saponin vol.78, 2012, https://doi.org/10.1016/j.molcatb.2012.03.015
  4. Soyasapogenol B and Genistein Attenuate Lipopolysaccharide-Induced Memory Impairment in Mice by the Modulation of NF-κB-Mediated BDNF Expression vol.65, pp.32, 2017, https://doi.org/10.1021/acs.jafc.7b02569
  5. Novel PI3K/Akt Inhibitors Screened by the Cytoprotective Function of Human Immunodeficiency Virus Type 1 Tat vol.6, pp.7, 2011, https://doi.org/10.1371/journal.pone.0021781
  6. Comparison of Soyasaponin Group B Contents in Soybean Seed by Different Cultivars and Regional Background vol.25, pp.4, 2012, https://doi.org/10.7732/kjpr.2012.25.4.394
  7. Soyasaponins Ab and Bb Prevent Scopolamine-Induced Memory Impairment in Mice without the Inhibition of Acetylcholinesterase vol.62, pp.9, 2014, https://doi.org/10.1021/jf4046528
  8. Biological Functionality of Soyasaponins and Soyasapogenols vol.62, pp.33, 2014, https://doi.org/10.1021/jf503047a
  9. Lactobacillus pentosusvar.plantarumC29 increases the protective effect of soybean against scopolamine-induced memory impairment in mice vol.66, pp.8, 2015, https://doi.org/10.3109/09637486.2015.1064865
  10. Studies on oral bioavailability and first‐pass metabolism of withaferin A in rats using LC–MS/MS and Q‐TRAP vol.33, pp.9, 2009, https://doi.org/10.1002/bmc.4573
  11. In Vitro Colonic Fermentation of Saponin-Rich Extracts from Quinoa, Lentil, and Fenugreek. Effect on Sapogenins Yield and Human Gut Microbiota vol.68, pp.1, 2009, https://doi.org/10.1021/acs.jafc.9b05659
  12. Secretion dynamics of soyasaponins in soybean roots and effects to modify the bacterial composition vol.4, pp.9, 2009, https://doi.org/10.1002/pld3.259
  13. Bridging the Gaps between Plant and Human Health: A Systematic Review of Soyasaponins vol.69, pp.48, 2009, https://doi.org/10.1021/acs.jafc.1c04819