DOI QR코드

DOI QR Code

Antioxidative Constituents from the Twigs of Vitex rotundifolia

  • Published : 2009.10.31

Abstract

In the course of screening for antioxidant compounds by measuring the radical scavenging effect on DPPH (1,1-diphenyl- 2-picrylhydrazyl), a total extract of the twigs of Vitex rotundifolia (Verbenaceae) was found to show potent antioxidant activity. Subsequent activity-guided fractionation of the methanolic extract led to the isolation of three iridoid compounds, 10-O-vanilloylaucubin (1), 10-O-p-hydroxybenzoylaucubin (2) and aucubin (3), two C-glycoside flavones, vitexin (4) and orientin (5), and a quinic acid derivative, 3,4-di-O-caffeoylquinic acid (6). Their structures were elucidated by spectroscopic studies. Among them, compounds 5 and 6 showed the significant antioxidative effects on DPPH free radical scavenging test. In riboflavin-NBT-light and xanthine-NBT-xanthine oxidase systems, compounds 5 and 6 exhibited the formation of the blue formazan in a dose-dependent manner. Compounds 5 and 6 showed better superoxide quenching activities than vitamin C.

Keywords

References

  1. Cheng, W. X., Chen, H. Y., Zhang, Y. P., Qin, X. L. and Gu, K. (2007). Chemical constituents of Vitex quinata. Nat. Prod. Res. Dev. 19, 244-246.
  2. Choi, D. S., Kim, S. J. and Jung, M. Y. (2001). Inhibitory activity of berberine on DNA strand cleavage induced by hydrogen peroxide and cytochrome c. Biosci. Biotechnol. Biochem. 65, 452-455. https://doi.org/10.1271/bbb.65.452
  3. Devi, K. R., Suganthy, N., Kesika, P. and Pandian, S. K. (2008). Bioprotective properties of seaweeds: In vitro evaluation of antioxidant activity and antimicrobial cativity against food borne bacteria in relation to polyphenolic content. BMC Complement Altern. Med. 8, 1-11. https://doi.org/10.1186/1472-6882-8-1
  4. El-Naggar, L. J. and Beal, J. L. (1980). Iridoids. A review. J. Nat. Prod. 43, 649-706. https://doi.org/10.1021/np50012a001
  5. Ginnopolitis, C. N. and Ries, S. K. (1977). Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 59, 309-314. https://doi.org/10.1104/pp.59.2.309
  6. Hwang, Y. J., Lee, S. H., Ryu, S. Y., Ahn, J. W., Kim, E. J, Ro, J. S. and Lee, K. S. (1994). Chemical study on the phenolic compounds from Gleditsia japonica. Kor. J. Pharmacogn. 25, 11-19.
  7. Kawazoe, K., Yutani, A., Tamemoto, K., Yuasa, S., Shibata, H., Higuti, T. and Takaishi, Y. (2001). Phenylnaphthalene compounds from the subterranean part of Vitex rotundifolia and their antibacterial activity against methicillin-resistant Staphylococcus aureus. J. Nat. Prod. 64, 588-591. https://doi.org/10.1021/np000307b
  8. Kim, S. Y., Kwon, Y. S. and Kim, C. M. (1999). Chemical constituents from Dipsacus asper. Kor. J. Pharmacogn. 30, 420-422.
  9. Kimura, T., But, P. P. H., Guo, J. X. and Sung, C. K. (1996). International collation of traditional and folk medicine. Part I, p. 141, World Scientific, Singapore.
  10. Ko, W. G., Kang, T. H., Lee, S. J., Kim, N. Y., Kim, Y. C., Sohn, D. H. and Lee, B. H. (2000). Polymethoxyflavonoids from Vitex rotundifolia inhibit proliferation by inducing apoptosis in human myeloid leukemia cells. Food Chem. Toxicol. 38, 861-865. https://doi.org/10.1016/S0278-6915(00)00079-X
  11. Kumaran, A. and Karunakaran, R. J. (2006). Antioxidant and free radical scavenging activity of and aqueous extract of Coleus aromaticus. Food Chem. 97, 109-114. https://doi.org/10.1016/j.foodchem.2005.03.032
  12. Okuyama, E., Fujimori, S., Yamazaki, M. and Deyama, T. (1998). Pharmacologically active components of viticis fructus (Vitex rotundifolia). II. The components having analgesic effects. Chem. Pharm. Bull. 46, 655-662. https://doi.org/10.1248/cpb.46.655
  13. Ono, M., Ito, Y., Kubo, S. and Nohara, T. (1997). Two new iridoids from viticis trifoliae fructus (fruit of Vitex rotundifolia L.) Chem. Pharm. Bull. 45, 1094-1096. https://doi.org/10.1248/cpb.45.1094
  14. Ono, M., Yamamoto, M., Masuoka, C., Ito, Y., Yamashita, M. and Nohara, T. (1999). Diterpenes from the fruits of Vitex rotundifolia. J. Nat. Prod. 62, 1532-1537. https://doi.org/10.1021/np990204x
  15. Ono, M., Yamamoto, M., Yanaka, T., Ito, Y. and Nohara, T. (2001). Ten new labdane-type diterpenes from the fruit of Vitex rotundifolia. Chem. Pharm. Bull. 49, 82-86. https://doi.org/10.1248/cpb.49.82
  16. Ono, M., Yanaka, T., Yamamoto, M., Ito, Y. and Nohara, T. (2002). New diterpenes and norditerpenes from the fruits of Vitex rotundifolia. J. Nat. Prod. 65, 537-541. https://doi.org/10.1021/np0105331
  17. Thuong, P. T., Kang, H. J., Na, M. K., Jin, W. Y., Youn, U. J. and Seong, Y. H. (2007). Anti-oxidant constituents from Sedum takesimense. Phytochemistry 68, 2432-2438. https://doi.org/10.1016/j.phytochem.2007.05.031
  18. Timmermann, B. N., Hoffmann, J. H., Jolad, S. D., Schram, K. H., Klench, R. E. and Bates, R. B. (1983). Constituents of Chrysothamanus paniculatus 3: 3,4,5-tricaffeoylquinic acid (A new shikimate prearomatic) and 3,4-, 3,5- and 4,5- dicaffeoylquinic acids. J. Nat. Prod. 46, 365-368. https://doi.org/10.1021/np50027a012
  19. Yoshioka, T., Inokuchi, T., Fujioka, S. and Kimura, Y. (2004). Phenolic compounds and flavonoids as plant growth regulators from fruit and leaf of Vitex rotundifolia. Z. Naturforsch. C. 59, 509-514.
  20. Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, L., Komagoe, K., Fujita, Y. and Okuda, T. (1989). Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V. Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37, 1919-1921. https://doi.org/10.1248/cpb.37.1919
  21. You, K. M., Son, K. H., Chang, H. W., Kang, S. S. and Kim, H. P. (1998). Vitexicarpin, a flavonoid from the fruits of Vitex rotundifolia, inhibits mouse lymphocyte proliferation and growth of cell lines in vitro. Planta Med. 64, 546-550. https://doi.org/10.1055/s-2006-957511

Cited by

  1. Chemical Constituents of the Halophyte Vitex rotundifolia vol.58, pp.6, 2014, https://doi.org/10.5012/jkcs.2014.58.6.686
  2. Constituents from Vitex negundo var. heterophylla and their inhibition of nitric oxide production vol.71, pp.1, 2017, https://doi.org/10.1007/s11418-016-1032-y
  3. A new iridoid glycoside from the fruits of Vitex rotundifolia vol.31, pp.21, 2017, https://doi.org/10.1080/14786419.2017.1314284
  4. Antioxidant Activity of Flavonoids Isolated from Vitex rotundifolia vol.33, pp.3, 2011, https://doi.org/10.4217/OPR.2011.33.3.255
  5. A rearranged labdane-type diterpenoid and other constituents from Vitex negundo var. cannabifolia vol.40, 2012, https://doi.org/10.1016/j.bse.2011.10.008
  6. Lignan Glycosides and Flavonoid Glycosides from the Aerial Portion of Lespedeza cuneata and Their Biological Evaluations vol.23, pp.8, 2018, https://doi.org/10.3390/molecules23081920
  7. Iridoids from Vitex negundo var. heterophylla and their antioxidant activities vol.35, pp.None, 2009, https://doi.org/10.1016/j.phytol.2019.11.018