DOI QR코드

DOI QR Code

Arachidonic Acid Mediates Apoptosis Induced by N-Ethylmaleimide in HepG2 Human Hepatoblastoma Cells

  • Published : 2009.10.31

Abstract

We have previously reported that N-ethylmaleimide (NEM) induces apoptosis through activation of $K^+$, $Cl^-$-cotransport (KCC) in HepG2 human hepatoblastoma cells. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signals in the mechanism of the NEM-induced apoptosis. In these experiments we used arachidonyl trifluoromethylketone ($AACOCF_3$), bromoenol lactone (BEL) and p-bromophenacyl bromide (BPB) as inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$), the calcium-independent $PLA_2$ ($iPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. BEL significantly inhibited the NEM-induced apoptosis, whereas $AACOCF_3$ and BPB did not. NEM increased AA liberation in a dose-dependent manner, which was markedly prevented only by BEL. In addition AA by itself induced $K^+$ efflux, a hallmark of KCC activation, which was comparable to that of NEM. The NEM-induced apoptosis was not significantly altered by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with AA or 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, significantly induced apoptosis. Collectively, these results suggest that AA liberated through activation of $iPLA_2$ may mediate the NEMinduced apoptosis in HepG2 cells.

Keywords

References

  1. Adragna, N. C., Di Fulvio, M. and Lauf, P.K. (2004). Regulation of K-Cl cotransport: from function to genes. J. Membr. Biol. 201, 109-137. https://doi.org/10.1007/s00232-004-0695-6
  2. Adragna, N. C., Ferrell, C. M., Zhang, J., Di Fulvio, M., Temprana, C. F., Sharma, A., Fyffe, R. E., Cool, D. R. and Lauf, P. K. (2006). Signal transduction mechanisms of $K^+-Cl^−$: cotransport regulation and relationship to disease. Acta Physiol. (Oxf) 187, 125-139. https://doi.org/10.1111/j.1748-1716.2006.01560.x
  3. Adragna, N. C., White, R. E., Orlov, S. N. and Lauf, P. K. (2000). K-Cl cotransport in vascular smooth muscle and erythrocytes: possible implication in vasodilation. Am. J. Physiol. 278, C381-C390. https://doi.org/10.1152/ajpcell.2000.278.2.C381
  4. Amlal, H., Paillard, M. and Bichara, M. (1994). $Cl^-$9-dependent $NH_4^+$ transport mechanisms in medullary thick ascending limb cells. Am. J. Physiol. 267, C1607-C1615. https://doi.org/10.1152/ajpcell.1994.267.6.C1607
  5. Bakalova, R., Matsura, T. and Kanno, I. (2002). The cyclooxygenase inhibitors indomethacin and rofecoxib reduce regional cerebral blood flow evoked by somatosensory stimulation in rats. Exp. Biol. Med. 227, 465-473. https://doi.org/10.1177/153537020222700710
  6. Block, K., Ricono, J. M., Lee, D. Y., Bhandari, B., Choudhury, G. G., Abboud, H. E. and Gorin, Y. (2006). Arachidonic acid-dependent activation of a $p22^{phox}$-based NAD(P)H oxidase mediates angiotensin II-induced mesangial cell protein synthesis and fibronectin expression via Akt/PKB. Antioxid. Redox Signal. 8, 1497-1508. https://doi.org/10.1089/ars.2006.8.1497
  7. Bocca, C., Bozzo, F., Martinasso, G., Canuto, R. A. and Miglietta, A. (2008). Involvement of PPAR$\alpha$ in the growth inhibitory effect of arachidonic acid on breast cancer cells. Br. J. Nutr. 100, 739-750. https://doi.org/10.1017/S0007114508942161
  8. Bombeli, T., Karsan, A., Tait, J. F. and Harlan, J. M. (1997). Apoptotic vascular endothelial cells become procoagulant. Blood 89, 2429-2442.
  9. Claria, J. (2006). Regulation of cell proliferation and apoptosis by bioactive lipid mediators. Recent Pat. Anticancer Drug Discov. 1, 369-382.
  10. Cool, R. H., Merten, E., Theiss, C. and Acker, H. (1998). Rac1, and not Rac2, is involved in the regulation of the intracellular hydrogen peroxide level in HepG2 cells. Biochem. J. 332, 5-8. https://doi.org/10.1042/bj3320005
  11. Cossins, A. R. and Gibson, J. S. (1997). Volume-sensitive transport systems and volume homeostasis in vertebrate red blood cells. J. Exp. Biol. 200, 343-352.
  12. Curnutte, J. T. (1985). Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system. J. Clin. Invest. 75, 1740-1743. https://doi.org/10.1172/JCI111885
  13. Ehleben, W., Porwol, T., Fandrey, J., Kummer, W. and Acker, H. (1997). Cobalt and desferrioxamine reveal crucial members of the oxygen sensing pathway in HepG2 cells. Kidney Int. 51, 483-491. https://doi.org/10.1038/ki.1997.67
  14. Ellison, D. H., Velazquez, H. and Wright, F. S. (1985). Stimulation of distal potassium secretion by low lumen chloride in the presence of barium. Am. J. Physiol. 248, F638-F649.
  15. Fulda, S. and Debatin, K. M. (2004). Targeting apoptosis pathways in cancer therapy. Curr. Cancer Drug Targets 4, 569-576. https://doi.org/10.2174/1568009043332763
  16. Greger, R. and Schlatter, E. (1983). Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Archiv. 396, 325-334. https://doi.org/10.1007/BF01063938
  17. Harizi, H., Corcuff, J. B. and Gualde, N. (2008). Arachidonicacid- derived eicosanoids: roles in biology and immunopathology. Trends Mol. Med. 14, 461-469. https://doi.org/10.1016/j.molmed.2008.08.005
  18. Hii, C. S. and Ferrante, A. (2007). Regulation of the NADPH oxidase activity and anti-microbial function of neutrophils by arachidonic acid. Arch. Immunol. Ther. Exp. (Warsz) 55, 99-110. https://doi.org/10.1007/s00005-007-0014-x
  19. Hoshino, S., Kikkawa, S., Takahashi, K., Itoh, H., Kaziro, Y., Kawasaki, H., Suzuki, K., Katada, T. and Ui, M. (1990). Identification of sites for alkylation by N-ethylmaleimide and pertussis toxin-catalyzed ADP-ribosylation on GTP-binding proteins. FEBS Lett. 276, 227-231. https://doi.org/10.1016/0014-5793(90)80548-W
  20. Hsu, Y. M., Chen, Y. F., Chou, C. Y., Tang, M. J., Chen, J. H., Wilkins, R. J., Ellory, J. C. and Shen, M. R. (2007a). KCl cotransporter- 3 down-regulates E-cadherin/beta-catenin complex to promote epithelial-mesenchymal transition. Cancer Res. 67, 11064-11073. https://doi.org/10.1158/0008-5472.CAN-07-2443
  21. Hsu, Y. M., Chou, C. Y., Chen, H. H., Lee, W. Y., Chen, Y. F., Lin, P. W., Alper, S. L., Ellory, J. C. and Shen, M. R. (2007b). IGF-1 upregulates electroneutral K-Cl cotransporter KCC3 and KCC4 which are differentially required for breast cancer cell proliferation and invasiveness. J. Cell. Physiol. 210, 626-636. https://doi.org/10.1002/jcp.20859
  22. Jayadev, S., Linardic, C. M. and Hannun, Y. A. (1994) Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor $\alpha$. J. Biol. Chem. 269, 5757-5763.
  23. Jenkins, C. M., Cedars, A. and Gross, R. W. (2009). Eicosanoid signalling pathways in the heart. Cardiovasc. Res. 82, 240-249. https://doi.org/10.1093/cvr/cvn346
  24. Joiner, C. H. (1993). Cation transport and volume regulation in sickle red blood cells. Am. J. Physiol. 264, C251-C270. https://doi.org/10.1152/ajpcell.1993.264.2.C251
  25. Kidd, V. J. (1998). Proteolytic activities that mediate apoptosis. Annu. Rev. Physiol. 60, 533-573. https://doi.org/10.1146/annurev.physiol.60.1.533
  26. Kim, C., Kim, J. Y. and Kim, J. H. (2008). Cytosolic phospholipase $A_2$, lipoxygenase metabolites, and reactive oxygen species. BMB Rep. 41, 555-559.
  27. Kim, J. A., Kang, Y. S. and Lee, Y. S. (2001). Involvement of $K^+$-$Cl^-$-cotransport in the apoptosis induced by N-ethylmaleimide in HepG2 human hepatoblastoma cells. Eur. J. Pharmacol. 418, 1-5. https://doi.org/10.1016/S0014-2999(01)00861-5
  28. Kim, J. A. and Lee, Y. S. (2001). Role of reactive oxygen species generated by NADPH oxidase in the mechanism of activation of $K^+$-$Cl^-$-cotransport by N-ethylmaleimide in HepG2 human hepatoma cells. Free Radic. Res. 35, 43-53. https://doi.org/10.1080/10715760100300581
  29. Kornblau, S. M. (1998). The role of apoptosis in the pathogenesis, prognosis, and therapy of hematologic malignancies. Leukemia 12, S41-46.
  30. Lauf, P. K., Bauer, J., Adragna, N. C., Fujise, H., Zade-Oppen, A. M. M., Ryu, K. H. and Delpire, E. (1992). Erythrocyte K-Cl cotransport: properties and regulation. Am. J. Physiol. 263, C917-C932. https://doi.org/10.1152/ajpcell.1992.263.5.C917
  31. Leoncini, G. and Signorello, M. G. (1999a). N-ethylmaleimide inhibition of thrombin-induced platelet aggregation. Biochem. Pharmacol. 58, 1293-1299. https://doi.org/10.1016/S0006-2952(99)00205-1
  32. Leoncini, G. and Signorello, M. G. (1999b). N-ethylmaleimidestimulated arachidonic acid release in human platelets. Biochem. Pharmacol. 57, 785-791. https://doi.org/10.1016/S0006-2952(98)00358-X
  33. Leslie, C. C. (2004). Regulation of arachidonic acid availability for eicosanoid production. Biochem. Cell. Biol. 82, 1-17. https://doi.org/10.1139/o03-080
  34. Lowe, S. W. and Lin, A. W. (2000). Apoptosis in cancer. Carcinogenesis 21, 485-495. https://doi.org/10.1093/carcin/21.3.485
  35. Martin, S., Phillips, D. C., Szekely-Szucs, K., Elghazi, L., Desmots, F. and Houghton, J. A. (2005). Cyclooxygenase-2 inhibition sensitizes human colon carcinoma cells to TRAIL-induced apoptosis through clustering of DR5 and concentrating death-inducing signaling complex components into ceramide-enriched caveolae. Cancer Res. 65, 11447-11458. https://doi.org/10.1158/0008-5472.CAN-05-1494
  36. Meves, A., Stock, S. N., Beyerle, A., Pittelkow, M. R. and Peus, D. (2001). $H_2O_2$ mediates oxidative stress-induced epidermal growth factor receptor phosphorylation. Toxicol. Lett. 122, 205-214. https://doi.org/10.1016/S0378-4274(01)00359-9
  37. Minta, A. and Tsien, R. Y. (1989). Fluorescent indicators for cytosolic sodium. J. Biol. Chem. 264, 19449-19457.
  38. Monjazeb, A. M., High, K. P., Koumenis, C. and Chilton, F. H. (2005). Inhibitors of arachidonic acid metabolism act synergistically to signal apoptosis in neoplastic cells. Prostaglandins Leukot. Essent. Fatty Acids 73, 463-474. https://doi.org/10.1016/j.plefa.2005.07.009
  39. Nakanishi, M. and Rosenberg, D. W. (2006) Roles of $cPLA_2{\alpha}$ and arachidonic acid in cancer. Biochim. Biophys. Acta 1761, 1335-1343. https://doi.org/10.1016/j.bbalip.2006.09.005
  40. Narendra Sharath Chandra, J. N., Ponnappa, K. C., Sadashiva, C. T., Priya, B. S., Nanda, B. L., Gowda, T. V., Vishwanath, B. S. and Rangappa, K. S. (2007). Chemistry and structural evaluation of different phospholipase A2 inhibitors in arachidonic acid pathway mediated inflammation and snake venom toxicity. Curr. Top. Med. Chem. 7, 787-800. https://doi.org/10.2174/156802607780487678
  41. Neve, E. P., Boyer, C. S. and Moldeus, P. (1995). N-ethyl maleimide stimulates arachidonic acid release through activation of the signal-responsive phospholipase $A_2$ in endothelial cells. Biochem. Pharmacol. 49, 57-63. https://doi.org/10.1016/0006-2952(94)00308-9
  42. Olivieri, O., Vitoux, D., Galacteros, F., Bachir, D., Blouquit, Y., Beuzard Y. and Brugnara, C. (1992). Hemoglobin variants and activity of ($K^+Cl^-$)cotransport system in human erythrocytes. Blood 79, 793-797.
  43. Papenfuss, K., Cordier, S. M. and Walczak, H. (2008). Death receptors as targets for anti-cancer therapy. J. Cell. Mol. Med. 12, 2566-2585. https://doi.org/10.1111/j.1582-4934.2008.00514.x
  44. Perry, P. B. and O'Neill, W. C. (1993). Swelling-activated K fluxes in vascular endothelial cells: volume regulation via K-Cl cotransport and K channels. Am. J. Physiol. 265, C763-C769. https://doi.org/10.1152/ajpcell.1993.265.3.C763
  45. Pompeia, C., Lima, T. and Curi, R. (2003). Arachidonic acid cytotoxicity: can arachidonic acid be a physiological mediator of cell death? Cell. Biochem. Funct. 21, 97-104. https://doi.org/10.1002/cbf.1012
  46. Ramanadham, S., Song, H., Bao, S., Hsu, F. F., Zhang, S., Ma, Z., Jin, C. and Turk, J. (2004). Islet complex lipids: involvement in the actions of group VIA calcium-independent phospholipase A2 in beta-cells. Diabetes 53 Suppl 1, S179-185. https://doi.org/10.2337/diabetes.53.2007.S179
  47. Rivera, C., Voipio, J., Payne, J. A., Ruusuvuori, E., Latineen, H., Lamsa, K., Pirvola, U., Saarma, M. and Kaila, K. (1999). The $K^+/Cl^-$co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251-255. https://doi.org/10.1038/16697
  48. Rodriguez-Nieto, S. and Zhivotovsky, B. (2006). Role of alterations in the apoptotic machinery in sensitivity of cancer cells to treatment. Curr. Pharm. Des. 12, 4411-4425. https://doi.org/10.2174/138161206779010495
  49. Scorrano, L., Penzo, D., Petronilli, V., Pagano, F. and Bernardi, P. (2001). Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-$\alpha$ aopototic signaling. J. Biol. Chem. 276, 12035-12040. https://doi.org/10.1074/jbc.M010603200
  50. Shen, M. R., Chou, C. Y. and Ellory, J. C. (2000). Volume-sensitive KCl cotransport associated with human cervical carcinogenesis. Pflugers Arch. 440, 751-760. https://doi.org/10.1007/s004240000338
  51. Shen, M. R., Lin, A. C., Hsu, Y. M., Chang, T. J., Tang, M. J., Alper, S. L., Ellory, J. C. and Chou, C. Y. (2004). Insulin-like growth factor 1 stimulates KCl cotransport, which is necessary for invasion and proliferation of cervical cancer and ovarian cancer cells. J. Biol. Chem. 279, 40017-40025. https://doi.org/10.1074/jbc.M406706200
  52. Shin, S. M. and Kim, S. G. (2009). Inhibition of arachidonic acid and iron-induced mitochondrial dysfunction and apoptosis by oltipraz and novel 1,2-dithiole-3-thione congeners. Mol. Pharmacol. 75, 242-253. https://doi.org/10.1124/mol.108.051128
  53. Song, Z. and Steller, H. (1999). Death by design: mechanism and control of apoptosis. Trends Cell. Biol. 9, 49-52. https://doi.org/10.1016/S0962-8924(99)01670-0
  54. Stuart, J. and Ellory, J. C. (1988). Rheological consequences of erythrocyte dehydration. Br. J. Haematol. 69, 1-4. https://doi.org/10.1111/j.1365-2141.1988.tb07593.x
  55. Van Der Zee, L., Nelemans, A. and Den Hertog, A. (1995). Arachidonic acid is functioning as a second messenger in activating the $Ca^{2+}^ entry process on $H_1$-histaminoceptor stimulation in $DDT_1$ MF-2 cells. Biochem. J. 305, 859-864. https://doi.org/10.1042/bj3050859
  56. Waite, M. (1996). Phospholipases. In Biochemistry of lipids, lipoproteins and membranes. (D. E., Vance, J. E. Vance, Eds.), pp. 211-236. Elsevier Science Publishing Co, New York.
  57. Wang, X. W. (1999). Role of p53 and apoptosis in carcinogenesis. Anticancer Res. 19, 4759-4771.
  58. Weil-Maslansky, E., Gutman, Y. and Sasson, S. (1994). Insulin activates furosemide-sensitive $K^+$ and $Cl^-$ uptake system in BC3H1 cells. Am. J. Physiol. 267, C932-C939. https://doi.org/10.1152/ajpcell.1994.267.4.C932
  59. Wolf, M. J., Wang, J., Turk, J. and Gross, R. W. (1997). Depletion of intracellular calcium stores activates smooth muscle cell calcium-independent phospholipase $A_2$. A novel mechanism underlying arachidonic acid mobilization. J. Biol. Chem. 272, 1522-1526. https://doi.org/10.1074/jbc.272.3.1522
  60. Wurster, S., Nakov, R., Allgaier, C. and Hertting, G. (1990). Involvement of N-ethylmaleimide-sensitive G proteins in the modulation of evoked [$^3H$]noradrenaline release from rabbit hippocampus synaptosomes. Neurochem. Int. 17, 149-155. https://doi.org/10.1016/0197-0186(90)90137-I
  61. Yan, G. X., Chen, J., Yamada, K. A., Kleber, A. G. and Corr, P. B. (1996). Contribution of shrinkage of extracellular space to extracellular $K^+$ accumulation in myocardial ischaemia of the rabbit. J. Physiol. (London) 490, 215-228. https://doi.org/10.1113/jphysiol.1996.sp021137
  62. Yellaturu, C. R., Bhanoori, M., Neeli, I. and Rao, G. N. (2002). N-Ethylmaleimide inhibits platelet-derived growth factor BB-stimulated Akt phosphorylation via activation of protein phosphatase 2A. J. Biol. Chem. 277, 40148-40155. https://doi.org/10.1074/jbc.M206376200
  63. Yellaturu, C. R. and Rao, G. N. (2003). A requirement for calcium- independent phospholipase $A_2$ in thrombin-induced arachidonic acid release and growth in vascular smooth muscle cells. J. Biol. Chem. 278, 43831-43837. https://doi.org/10.1074/jbc.M301472200

Cited by

  1. Catalytic Enantioselective Conjugate Alkynylation of α,β-Unsaturated 1,1,1-Trifluoromethyl Ketones with Terminal Alkynes vol.22, pp.29, 2016, https://doi.org/10.1002/chem.201601303