DOI QR코드

DOI QR Code

Carboxylesterases: Structure, Function and Polymorphism

  • Satoh, Tetsuo (Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, and HAB Research Laboratory, Ichikawa General Hospital) ;
  • Hosokawa, Masakiyo (Laboratory of Drug Metabolism and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba Institute of Science)
  • Published : 2009.10.31

Abstract

This review covers current developments in molecular-based studies of the structure and function of carboxylesterases. To allay the confusion of the classic classification of carboxylesterase isozymes, we have proposed a novel nomenclature and classification of mammalian carboxylesterases on the basis of molecular properties. In addition, mechanisms of regulation of gene expression of carboxylesterases by xenobiotics, and involvement of carboxylesterase in drug metabolism are also described.

Keywords

References

  1. Brzezinski, M. R., Abraham, T. L., Stone, C. L., Dean, R. A. and Bosron, W. F. (1994). Purification and characterization of a human liver cocaine carboxylesterase that catalyzes the production of benzoylecgonine and the formation of cocaethylene from alcohol and cocaine. Biochem. Pharmacol. 48, 1747-1755. https://doi.org/10.1016/0006-2952(94)90461-8
  2. Brzezinski, M. R., Spink, B. J., Dean, R. A., Berkman, C. E., Cashman, J. R. and Bosron, W. F. (1997). Human liver carboxylesterase hCE-1: binding specificity for cocaine, heroin, and their metabolites and analogs. Drug Metab. Dispos. 25, 1089-1096.
  3. Christopher, L. M., Randy, M. W., Danks, M. K. and Potter, P. M. (1999). The anticancer prodrug CPT-11 is a potent inhibitor of acetylcholinesterase but is rapidly catalyzed to SN-38 by butyrylcholinesterase. Cancer Res. 59, 1458-1463.
  4. Cygler, M., Schrag, J. D., Sussman, J. L., Harel, M., Silman, I., Gentry, M. K. and Doctor, B. P. (1993). Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 2, 366-382. https://doi.org/10.1002/pro.5560020309
  5. Danks, M. K., Morton, C. L., Pawlik, C. A. and Potter, P. M. (1998). Overexpression of a rabbit liver carboxylesterase sensitizes human tumor cells to CPT-11. Cancer Res. 58, 20-22.
  6. Derbel, M., Hosokawa, M. and Satoh, T. (1996). Differences in the induction of carboxylesterase RL4 in rat liver microsomes by various perfluorinated fatty acids, metabolically inert derivatives of fatty acids. Biol. Pharam. Bull. 19, 765- 767. https://doi.org/10.1248/bpb.19.765
  7. Dodds, H. M. and Rivory, L. P. (1999). The mechanism for the inhibition of acetylcholinesterases by irinotecan (CPT-11). Mol. Pharmacol. 56, 1346-1353. https://doi.org/10.1124/mol.56.6.1346
  8. Ellinghaus, P., Seedorf, U. and Assmann, G. (1998). Cloning and sequencing of a novel murine liver carboxylesterase cDNA. Biochim. Biophys. Acta. 1397, 175-179. https://doi.org/10.1016/S0167-4781(98)00023-2
  9. Frey, P. A., Whitt, S. A. and Tobin, J. B. (1994). A low-barrier hydrogen bond in the catalytic triad of serine proteases. Science 264, 1927-1930. https://doi.org/10.1126/science.7661899
  10. Fukami, T., Nakajima, M., Maruichi, T., Takahashi, S., Takamiya, M., Aoki, Y., McLeod, H. L. and Yokoi, T. (2008). Structure and characterization of human carboxylesterase 1A1, 1A2, and 1A3 genes. Pharmacogenet. Genomics. 18, 911-920. https://doi.org/10.1097/FPC.0b013e32830b0c5e
  11. Furihata, T., Hosokawa, M., Fujii, A., Derbel, M., Satoh, T. and Chiba, K. (2005). Dexamethasone-induced methylprednisolone hemisuccinate hydrolase: Its identification as a member of the rat carboxylesterase 2 family and its unique existence in plasma. Biochem. Pharmacol. 69, 1287-1297. https://doi.org/10.1016/j.bcp.2005.01.017
  12. Furihata, T., Hosokawa, M., Koyano, N., Nakamura, T., Satoh, T. and Chiba, K. (2004a). Identification of di-(2-ethylhexyl) phthalate-induced carboxylesterase 1 in C57BL/6 mouse liver microsomes: purification, cDNA cloning, and baculovirusmediated expression Identification of the cytosolic carboxylesterase catalyzing the 5'-deoxy-5-fluorocytidine formation from capecitabine in human liver. Drug Metab. Dispos. 32, 1170-1177. https://doi.org/10.1124/dmd.104.000620
  13. Furihata, T., Hosokawa, M., Masuda, M., Satoh, T. and Chiba, K. (2006). Hepatocyte nuclear factor-4alpha plays pivotal roles in the regulation of mouse carboxylesterase 2 gene transcription in mouse liver. Arch. Biochem. Biophys. 447, 107-117. https://doi.org/10.1016/j.abb.2006.01.015
  14. Furihata, T., Hosokawa, M., Nakata, F., Satoh, T. and Chiba, K. (2003). Purification, molecular cloning, and functional expression of inducible liver acylcarnitine hydrolase in C57BL/6 mouse, belonging to the carboxylesterase multigene family. Arch. Biochem. Biophys. 416, 101-109. https://doi.org/10.1016/S0003-9861(03)00286-8
  15. Furihata, T., Hosokawa, M., Satoh, T. and Chiba, K. (2004b). Synergistic role of specificity proteins and upstream stimulatory factor 1 in transactivation of the mouse carboxylesterase 2/microsomal acylcarnitine hydrolase gene promoter. Biochem. J. 384, 101-110. https://doi.org/10.1042/BJ20040765
  16. Geshi, E., Kimura, T., Yoshimura, M., Suzuki, H., Koba, S., Sakai, T., Saito, T., Koga, A., Muramatsu, M. and Katagiri, T. (2005). A single nucleotide polymorphism in the carboxylesterase gene is associated with the responsiveness to imidapril medication and the promoter activity. Hypertens. Res. 28, 719-725. https://doi.org/10.1291/hypres.28.719
  17. Guichard, S. M., Morton, C. L., Krull, E. J., Stewart, C. F., Danks M. K. and Potter P. M. (1998). Conversion of the CPT-11 metabolite APC to SN-38 by rabbit liver carboxylesterase. Clin. Cancer Res. 4, .
  18. Hattori, K., Igarashi, M., Itoh, M., Tomisawa, H. and Tateishi, M. (1992). Specific induction by glucocorticoids of steroid esterase in rat hepatic microsomes and its release into serum. Biochem. Pharmacol. 43, 1921-1927. https://doi.org/10.1016/0006-2952(92)90634-U
  19. Hosokawa, M. (1990). Differences in the functional roles of hepatic microsomal carboxylesterase isozymes in various mammals and humans. Xenobiotic Metab. Dispos. 5, 185-195.
  20. Hosokawa, M., Endo, Y., Fujisawa, M., Hara, S., Iwata, N., Sato, Y. and Satoh, T. (1995). Interindividual variation in carboxylesterase levels in human liver microsomes. Drug Metab. Dispos. 23, 1022-1027.
  21. Hosokawa, M., Furihata, T., Yaginuma, Y., Yamamoto, N., Koyano, N., Fujii, A., Nagahara, Y., Satoh, T. and Chiba, K. (2007). Genomic structure and transcriptional regulation of the rat, mouse, and human carboxylesterase genes. Drug Metab. Rev. 39, 1-15. https://doi.org/10.1080/03602530600952164
  22. Hosokawa, M., Furihata, T., Yaginuma, Y., Yamamoto, N., Watanabe, N., Tsukada, E., Ohhata, Y., Kobayashi, K., Satoh, T. and Chiba, K. (2008). Structural organization and characterization of the regulatory element of the human carboxylesterase (CES1A1 and CES1A2) genes. Drug Metab. Pharmacokinet. 23, 73-84. https://doi.org/10.2133/dmpk.23.73
  23. Hosokawa, M., Hirata, K., Nakata, F., Suga, T. and Satoh, T. (1994). Species differences in the induction of hepatic microsomal carboxylesterases caused by dietary exposure to di (2-ethylhexyl)phthalate, a peroxisome proliferator. Drug Metab. Dispos. 22, 889-894.
  24. Hosokawa, M., Maki, T. and Satoh, T. (1987). Multiplicity and regulation of hepatic microsomal carboxylesterases in rats. Mol. Pharmacol. 31, 579-584.
  25. Hosokawa, M., Maki, T. and Satoh, T. (1990). Characterization of molecular species of liver microsomal carboxylesterases of several animal species and humans. Arch. Biochem. Biophys. 277, 219-227. https://doi.org/10.1016/0003-9861(90)90572-G
  26. Hosokawa, M. and Satoh, T. (1993). Differences in the induction of carboxylesterase isozymes in rat liver microsomes by perfluorinated fatty acids. Xenobiotica 23, 1125-1133. https://doi.org/10.3109/00498259309059427
  27. Hosokawa, M. and Satoh, T. (1996). Molecular aspect of the inter-species variation in carboxylesterase. North American ISSX Meeting, San Diego.
  28. Hosokawa, M., Satoh, T., Ohkawara, S., Ohmori, S., Igarashi, T., Ueno, K. and Kitagawa, H. (1984). Gonadal hormoneinduced changes in hepatic microsomal carboxylesterase in rats. Res. Commun. Chem. Pathol. Pharmacol. 46, 245-258.
  29. Hosokawa, M., Suzuki, K., Takahashi, D., Mori, M., Satoh, T. and Chiba, K. (2001). Purification, molecular cloning, and functional expression of dog liver microsomal acyl-CoA hydrolase: a member of the carboxylesterase multigene family. Arch. Biochem. Biophys. 389, 245-253. https://doi.org/10.1006/abbi.2001.2346
  30. Humerickhouse, R., Lohrbach, K., Li, L., Bosron, W. F. and Dolan, M. E. (2000). Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res. 60, 1189-1192.
  31. Imai, T. (2006). Human carboxylesterase isozymes: catalytic properties and rational drug design. Drug Metab. Pharmacokinet. 21, 173-185. https://doi.org/10.2133/dmpk.21.173
  32. Imai, T., Taketani, M., Shii, M., Hosokawa, M. and Chiba, K. (2006). Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine. Drug Metab. Dispos. 34, 1734-1741. https://doi.org/10.1124/dmd.106.009381
  33. Inoue, M., Morikawa, M., Tsuboi, M. and Sugiura, M. (1979a). Species difference and characterization of intestinal esterase on the hydrolizing activity of ester-type drugs. Jpn. J. Pharmacol. 29, 9-16. https://doi.org/10.1254/jjp.29.9
  34. Inoue, M., Morikawa, M., Tsuboi, M., Yamada, T. and Sugiura, M. (1979b). Hydrolysis of ester-type drugs by the purified esterase from human intestinal mucosa. Jpn. J. Pharmacol. 29, 17-25. https://doi.org/10.1254/jjp.29.17
  35. Jaganathan, L. and Boopathy, R. (1998). Interaction of Triton X-100 with acyl pocket of butyrylcholinesterase: effect on esterase activity and inhibitor sensitivity of the enzyme. Indian J. Biochem. Biophys. 35, 142-147.
  36. Kamendulis, L. M., Brzezinski, M. R., Pindel, E. V., Bosron, W. F. and Dean, R. A. (1996). Metabolism of cocaine and heroin is catalyzed by the same human liver carboxylesterases. J. Pharmacol. Exp. Ther. 279, 713-717.
  37. Kojima, A., Hackett, N. R., Ohwada, A. and Crystal, R. G. (1998). In vivo human carboxylesterase cDNA gene transfer to activate the prodrug CPT-11 for local treatment of solid tumors. J. Clin. Invest. 101, 1789-1796. https://doi.org/10.1172/JCI119888
  38. Korza, G. and Ozols, J. (1988). Complete covalent structure of 60-kDa esterase isolated from 2,3,7,8-tetrachlorodibenzo-pdioxin- induced rabbit liver. J. Biol. Chem. 263, 3486-3495.
  39. Kroetz, D. L., McBride, O. W. and Gonzalez, F. J. (1993). Glycosylation-dependent activity of baculovirus-expressed human liver c arboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms. Biochemistry 32, 11606-11617. https://doi.org/10.1021/bi00094a018
  40. Kusano, K., Seko, T., Tanaka, S., Shikata, Y., Ando, T., Ida, S., Hosokawa, M., Satoh, T., Yuzuriha, T. and Horie, T. (1996). Purification and characterization of monkey liver amidohydrolases and it's relationship to a metabolic polymorphism of E6123, a platelet activating factor receptor antagonist. Drug Metab. Didpos. 24, 1186-1191.
  41. Langmann, T., Aslanidis, C., Schuierer, M. and Schmitz, G. (1997a). Differentiation-dependent expression of a human carboxylesterase in monocytic cells and transcription factor binding to the promoter. Biochem. Biophys. Res. Commun. 230, 215-219. https://doi.org/10.1006/bbrc.1996.5912
  42. Langmann, T., Becker, A., Aslanidis, C., Notka, F., Ullrich, H., Schwer, H., and Schmitz, G. (1997b). Structural organization and characterization of the promoter region of a human carboxylesterase gene. Biochim. Biophys. Acta. 1350, 65-74. https://doi.org/10.1016/S0167-4781(96)00142-X
  43. Lehner, R., Cui, Z. and Vance, D. E. (1999). Subcellullar localization, developmental expression and characterization of a liver triacylglycerol hydrolase. Biochem. J. 338, 761-768. https://doi.org/10.1042/0264-6021:3380761
  44. Lynch, T. Y., Mattes, C. E., Singh, A., Bradley, R. M., Brady, R. O. and Dretchen K. L. (1997). Cocaine detoxification by human plasma butyrylcholinesterase. Toxicol. Appl. Pharmacol. 145, 363-371 https://doi.org/10.1006/taap.1997.8187
  45. Maki, T., Hosokawa, M., Satoh, T. and Sato, K. (1991). Changes in carboxylesterase isoenzymes of rat liver microsomes during hepatocarcinogenesis. Jpn. J. Cancer Res. 82, 800-806. https://doi.org/10.1111/j.1349-7006.1991.tb02705.x
  46. Mansbach, C. M. and Nevin, P. (1998). Intracellular movement of triacylglycerols in the intestine. J. Lipid. Res. 39, 963-968.
  47. Mattes, C., Bradley, R., Slaughter, E. and Browne, S. (1996). Cocaine and butyrylcholinesterase (BChE): Determination of enzymatic properties. Pharmacol. Lett. 58, 257-261. https://doi.org/10.1016/0024-3205(96)00065-3
  48. Medda, S., Takeuchi, K., Devore-Carter, D., von Deimling, O., Heymann, E. and Swank, R. T. (1987). An accessory protein identical to mouse egasyn is complexed with rat microsomal beta-glucuronidase and is identical to rat esterase-3. J. Biol. Chem. 262, 7248-7253.
  49. Mentlein, R., Heiland, S. and Heymann, E. (1980). Simultaneous purification and comparative characterization of six serine hydrolases from rat liver microsomes. Arch. Biochem. Biophys. 200, 547-559. https://doi.org/10.1016/0003-9861(80)90386-0
  50. Mentlein, R. and Heymann, E. (1984). Hydrolysis of ester- and amide-type drugs by the purified isoenzymes of nonspecific carboxylesterase from rat liver. Biochem. Pharmacol. 33, 1243-1248. https://doi.org/10.1016/0006-2952(84)90176-X
  51. Mentlein, R., Schumann, M. and Heymann, E. (1984). Comparative chemical and immunological characterization of five lipolytic enzymes (carboxylesterases) from rat liver microsomes. Arch. Biochem. Biophys. 234, 612-621. https://doi.org/10.1016/0003-9861(84)90311-4
  52. Miyazaki, M., Yamashita, T., Hosokawa, M., Taira, H. and Suzuki, A. (2006a). Species-, sex-, and age-dependent urinary excretion of cauxin, a mammalian carboxylesterase. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 145, 270-277. https://doi.org/10.1016/j.cbpb.2006.05.015
  53. Miyazaki, M., Yamashita, T., Suzuki, Y., Saito, Y., Soeta, S., Taira, H. and Suzuki, A. (2006b). A major urinary protein of the domestic cat regulates the production of felinine, a putative pheromone precursor. Chem. Biol. 13, 1071-1079. https://doi.org/10.1016/j.chembiol.2006.08.013
  54. Morgan, E. W., Yan, B., Greenway, D., Petersen, D. R. and Parkinson, A. (1994). Purification and characterization of two rat liver microsomal c arboxylesterases (hydrolase A and B). Arch. Biochem. Biophys. 315, 495-512. https://doi.org/10.1006/abbi.1994.1531
  55. Mori, M., Hosokawa, M., Ogasawara, Y., Tsukada, E. and Chiba, K. (1999). cDNA cloning, characterization and stable expression of novel human brain carboxylesterase. FEBS Lett. 458, 17-22. https://doi.org/10.1016/S0014-5793(99)01111-4
  56. Ohtsuka, K., Inoue, S., Kameyama, M., Kanetoshi, A., Fujimoto, T., Takaoka, K., Araya, Y. and Shida, A. (2003). Intracellular conversion of irinotecan to its active form, SN-38, by native carboxylesterase in human non-small cell lung cancer. Lung Cancer 41, 187-198. https://doi.org/10.1016/S0169-5002(03)00223-X
  57. Ose, A., Ito, M., Kusuhara, H., Yamatsugu, K., Kanai, M., Shibasaki, M., Hosokawa, M., Schuetz, J. D. and Sugiyama, Y. (2009). Limited brain distribution of [3R,4R,5S]-4-acetamido- 5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab. Dispos. 37, 315-321.㐱ꤠ돀㢱?⨀塨?⨀ქ?⨀脠돐ュ?⨀ࡗ잖⨀㣥?⨀夠돐壥?⨀㢣ທ⨀惥?⨀ㄠ덐烥?⨀†ᤀ住位䈴弲〰㥟瘱㝮㑟㌳㕟〴㔢1〮ㄱㄱ⽪⸱㌴㤭㜰〶⸱㤹ㄮ瑢〲㜰㔮硚C桡湧敳 https://doi.org/10.1124/dmd.108.024018
  58. Ovnic, M., Swank, R. T., Fletcher, C., Zhen, L., Novak, E. K., Baumann, H., Heintz, N. and Ganschow, R. E. (1991a). Characterization and functional expression of a cDNA encoding egasyn (esterase-22): the endoplasmic reticulumtargeting protein of beta- glucuronidase. Genomics 11, 956-967. https://doi.org/10.1016/0888-7543(91)90020-F
  59. Ovnic, M., Tepperman, K., Medda, S., Elliott, R. W., Stephenson, D. A., Grant, S. G. and Ganschow, R. E. (1991b). Characterization of a murine cDNA encoding a member of the carboxylesterase multigene family. Genomics 9, 344-354. https://doi.org/10.1016/0888-7543(91)90263-E
  60. Ozols, J. (1989). Isolation, properties, and the complete amino acid sequence of a second form of 60-kDa glycoprotein esterase. J. Biol. Chem. 264, 12533-12545.
  61. Pelham, H. R. (1990). The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem. Sci. 15, 483-486. https://doi.org/10.1016/0968-0004(90)90303-S
  62. Pindel, E. V., Kedishvili, N. Y., Abraham, T. L., Brzezinski, M.R., Zhang J., Dean R. A. and Bosron W. F. (1997). Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. J. Biol. Chem. 272, 14769-14775. https://doi.org/10.1074/jbc.272.23.14769
  63. Potter, P. M., Pawlik, C. A., Morton, C. L., Naeve, C. W. and Danks, M. K. (1998). Isolation and partial characterization of a cDNA encoding a rabbit liver carboxylesterase that activates the prodrug irinotecan (CPT-11). Cancer Res. 58, 2646-2651.
  64. Probst, M. R., Jeno, P. and Meyer, U. A. (1991). Purification and characterization of a human liver arylacetamide deacetylase. Biochem. Biophys. Res. Commun. 177, 453-459. https://doi.org/10.1016/0006-291X(91)92005-5
  65. Prueksaritanont, T., Gorham, L. M., Hochman, J. H., Tran, L.O. and Vyas, K. P. (1996). Comparative studies of drugmetabolizing enzymes in dog, monkey, and human small intestines, and in Caco-2 cells. Drug Metab. Dispos. 24, 634-642.
  66. Robbi, M. and Beaufay, H. (1987). Biosynthesis of rat liver pI-6.1 esterase, a carboxylesterase of the cisternal space of the endoplasmic reticulum. Biochem. J. 248, 545-550. https://doi.org/10.1042/bj2480545
  67. Robbi, M. and Beaufay, H. (1991). The COOH terminus of several liver carboxylesterases targets these enzymes to the lumen of the endoplasmic reticulum. J. Biol. Chem. 266, 20498-20503.
  68. Robbi, M. and Beaufay, H. (1994). Cloning and sequencing of rat liver carboxylesterase ES-3 (egasyn). Biochem. Biophys. Res. Commun. 203, 1404-1411. https://doi.org/10.1006/bbrc.1994.2341
  69. Robbi, M., Beaufay, H. and Octave, J. N. (1990). Nucleotide sequence of cDNA coding for rat liver pI 6.1 esterase (ES-10), a carboxylesterase located in the lumen of the endoplasmic reticulum. Biochem. J. 269, 451-458. https://doi.org/10.1042/bj2690451
  70. Robbi, M., Van Schaftingen, E. and Beaufay, H. (1996). Cloning and sequencing of rat liver carboxylesterase ES-4 (microsomal palmitoyl-CoA hydrolase). Biochem. J. 313, 821-826. https://doi.org/10.1042/bj3130821
  71. Rush, R. S., Main, A. R., Kilpatrick, B. F. and Faulkner, G. D. (1981). Inhibition of two monomeric butyrylcholinesterases from rabbit liver by chlorpromazine and other drugs. J. Pharmacol. Exp. Ther. 216, 586-591.
  72. Sanghani, S. P., Quinney, S. K., Fredenburg, T. B., Davis, W. I., Murry, D. J. and Bosron, W. F. (2004). Hydrolysis of irinotecan and its oxidative metabolites, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxycamptothecin and 7-ethyl-10- [4-(1-piperidino)-1-amino]-carbonyloxycamptothecin, by human carboxylesterases CES1A1, CES2, and a newly expressed carboxylesterase isoenzyme, CES3. Drug Metab. Dispos. 32, 505-511. https://doi.org/10.1124/dmd.32.5.505
  73. Sanghani, S. P., Quinney, S. K., Fredenburg, T. B., Sun, Z., Davis, W. I., Murry, D. J., Cummings, O. W., Seitz, D. E. and Bosron, W. F. (2003). Carboxylesterases expressed in human colon tumor tissue and their role in CPT-11 hydrolysis. Clin. Cancer Res. 9, 4983-4991.
  74. Satoh, T. and Hosokawa, M. (1995). Molecular aspects of carboxylesterase isoforms in comparison with other esterases. Toxicology Letters 82, 439-445. https://doi.org/10.1016/0378-4274(95)03493-5
  75. Satoh, T. and Hosokawa, M. (1998). The mammalian carboxylesterases: from molecules to functions. Annu. Rev. Pharmacol. Toxicol. 38, 257-288. https://doi.org/10.1146/annurev.pharmtox.38.1.257
  76. Satoh, T. and Hosokawa, M. (2006). Structure, function and regulation of carboxylesterases. Chem. Biol. Interact. 162, 195-211. https://doi.org/10.1016/j.cbi.2006.07.001
  77. Satoh, T., Hosokawa, M., Atsumi, R., Suzuki, W., Hakusui, H. and Nagai, E. (1994). Metabolic activation of CPT-11, 7-ethyl- 10-[4-(1-piperidino)-1- piperidino]carbonyloxycamptothecin, a novel antitumor agent, by c arboxylesterase. Biol. Pharm. Bull. 17, 662-664. https://doi.org/10.1248/bpb.17.662
  78. Satoh, T., Taylor, P., Bosron, W. F., Sanghani, S. P., Hosokawa, M. and La Du, B. N. (2002). Current progress on esterases: from molecular structure to function. Drug Metab. Dispos. 30, 488-493. https://doi.org/10.1124/dmd.30.5.488
  79. Schwer, H., Langmann, T., Daig, R., Becker, A., Aslanidis, C. and Schmitz, G. (1997). Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver. Biochem. Biophys. Res. Commun. 233, 117-120. https://doi.org/10.1006/bbrc.1997.6413
  80. Shi, D., Yang, J., Yang, D., LeCluyse, E. L., Black, C., You, L., Akhlaghi, F. and Yan, B. (2006). Anti-influenza prodrug oseltamivir is activated by carboxylesterase human carboxylesterase 1, and the activation is inhibited by antiplatelet agent clopidogrel. J. Pharmacol. Exp. Ther. 319, 1477-1484. https://doi.org/10.1124/jpet.106.111807
  81. Shi, D., Yang, J., Yang, D. and Yan, B. (2008). Dexamethasone suppresses the expression of multiple rat carboxylesterases through transcriptional repression: evidence for an involvement of the glucocorticoid receptor. Toxicology 254, 97-105. https://doi.org/10.1016/j.tox.2008.09.019
  82. Shibata, F., Takagi, Y., Kitajima, M., Kuroda, T. and Omura, T. (1993). Molecular cloning and characterization of a human carboxylesterase gene. Genomics 17, 76-82. https://doi.org/10.1006/geno.1993.1285
  83. Sone, T., Isobe, M., Takabatake, E. and Wang, C. Y. (1994). Cloning and sequence analysis of a hamster liver cDNA encoding a novel putative carboxylesterase. Biochim. Biophys. Acta. 1207, 138-142. https://doi.org/10.1016/0167-4838(94)90063-9
  84. Tabata, T., Katoh, M., Tokudome, S., Nakajima, M. and Yokoi, T. (2004). Identification of the cytosolic carboxylesterase catalyzing the 5'-deoxy-5-fluorocytidine formation from capecitabine in human liver. Drug Metab. Dispos. 32, 1103-1110. https://doi.org/10.1124/dmd.104.000554
  85. Takahashi, S., Katoh, M., Saitoh, T., Nakajima, M. and Yokoi, T. (2009). Different inhibitory effects in rat and human carboxylesterases. Drug Metab. Dispos. 37, 956-961. https://doi.org/10.1124/dmd.108.024331
  86. Takai, S., Matsuda, A., Usami, Y., Adachi, T., Sugiyama, T., Katagiri, Y., Tatematsu, M. and Hirano, K. (1997). Hydrolytic profile for ester- or amide-linkage by carboxylesterases pI 5.3 and 4.5 from human liver. Biol. Pharm. Bull. 20, 869-873. https://doi.org/10.1248/bpb.20.869
  87. Taketani, M., Shii, M., Ohura, K., Ninomiya, S. and Imai, T. (2007). Carboxylesterase in the liver and small intestine of experimental animals and human. Life Sci. 81, 924-932. https://doi.org/10.1016/j.lfs.2007.07.026
  88. Tang, B. K. and Kalow, W. (1995). Variable activation of lovastatin by hydrolytic enzymes in human plasma and liver. 4. Eur. J. Clin. Pharmacol. 47, 449-451. https://doi.org/10.1007/BF00196860
  89. von Heijne, G. (1983). Patterns of amino acids near signalsequence cleavage sites. Eur. J. Biochem. 133, 17-21. https://doi.org/10.1111/j.1432-1033.1983.tb07424.x
  90. Wallace, T. J., Ghosh, S. and McLean Grogan, W. (1999). Molecular cloning and expression of rat lung carboxylesterase and its potential role in the detoxification of organophosphorus compounds [In Process Citation]. Am. J. Respir. Cell Mol. Biol. 20, 1201-1208. https://doi.org/10.1165/ajrcmb.20.6.3402
  91. Watanabe, K., Kayano, Y., Matsunaga, T., Yamamoto, I. and Yoshimura, H. (1993). Purification and characterization of a novel 46.5-kilodalton esterase from mouse hepatic microsomes. Biochem. Mol. Biol. Int. 31, 25-30.
  92. Wong, H. and Schotz, M. C. (2002). The lipase gene family. J. Lipid. Res. 43, 993-999. https://doi.org/10.1194/jlr.R200007-JLR200
  93. Yan, B., Yang, D., Brady, M. and Parkinson, A. (1994). Rat kidney carboxylesterase. Cloning, sequencing, cellular localization, and relationship to rat liver hydrolase. J. Biol. Chem. 269, 29688-29696.
  94. Yan, B., Yang, D., Brady, M. and Parkinson, A. (1995a). Rat testicular carboxylesterase: cloning, cellular localization, and relationship to liver hydrolase A. Arch. Biochem. Biophys. 316, 899-908. https://doi.org/10.1006/abbi.1995.1121
  95. Yan, B., Yang, D., Bullock, P. and Parkinson, A. (1995b). Rat serum carboxylesterase. Cloning, expression, regulation, and evidence of secretion from liver. J. Biol. Chem. 270, 19128-19134. https://doi.org/10.1074/jbc.270.32.19128
  96. Yan, B., Yang, D. and Parkinson, A. (1995c). Cloning and expression of hydrolase C, a member of the rat carboxylesterase family. Arch. Biochem. Biophys. 317, 222-234. https://doi.org/10.1006/abbi.1995.1157
  97. Yang, J., Shi, D., Yang, D., Song, X. and Yan, B. (2007). Interleukin- 6 alters the cellular responsiveness to clopidogrel, irinotecan, and oseltamivir by suppressing the expression of carboxylesterases HCE1 and HCE2. Mol. Pharmacol. 72, 686-694. https://doi.org/10.1124/mol.107.036889
  98. Yoshimura, M., Kimura, T., Ishii, M., Ishii, K., Matsuura, T., Geshi, E., Hosokawa, M. and Muramatsu, M. (2008). Functional polymorphisms in carboxylesterase1A2 (CES1A2) gene involves specific protein 1 (Sp1) binding sites. Biochem. Biophys. Res. Commun. 369, 939-942. https://doi.org/10.1016/j.bbrc.2008.02.120
  99. Zhang, J., Burnell, J. C., Dumaual, N. and Bosron, W. F. (1999). Binding and hydrolysis of meperidine by human liver carboxylesterase hCE-1. J. Pharmacol. Exp. Ther. 290, 314-318.
  100. Zhang, W., Xu, G. and McLeod, H. L. (2002). Comprehensive evaluation of carboxylesterase-2 expression in normal human tissues using tissue array analysis. Appl. Immunohistochem. Mol. Morphol. 10, 374-380. https://doi.org/10.1097/00022744-200212000-00015
  101. Zschunke, F., Salmassi, A., Kreipe, H., Buck, F., Parwaresch, M. R. and Radzun, H. J. (1991). cDNA cloning and characterization of human monocyte/macrophage serine esterase-1. Blood 78, 506-512.

Cited by

  1. A bioluminescent sensor for highly selective and sensitive detection of human carboxylesterase 1 in complex biological samples vol.52, pp.15, 2016, https://doi.org/10.1039/C5CC09874B
  2. Human carboxylesterase 2: Studies on the role of glycosylation for enzymatic activity vol.5, 2016, https://doi.org/10.1016/j.bbrep.2015.11.018
  3. Assessment of the inhibitory effects of pyrethroids against human carboxylesterases vol.321, 2017, https://doi.org/10.1016/j.taap.2017.02.018
  4. Highly sensitive and selective detection of human carboxylesterase 1 activity by liquid chromatography with fluorescence detection vol.1008, 2016, https://doi.org/10.1016/j.jchromb.2015.11.046
  5. The Impact of Carboxylesterases in Drug Metabolism and Pharmacokinetics vol.20, pp.2, 2019, https://doi.org/10.2174/1389200219666180821094502
  6. Catalytic Hydrolysis Mechanism of Cocaine by Human Carboxylesterase 1: An Orthoester Intermediate Slows Down the Reaction vol.24, pp.22, 2009, https://doi.org/10.3390/molecules24224057
  7. Construction and application of a high-content analysis for identifying human carboxylesterase 2 inhibitors in living cell system vol.412, pp.11, 2020, https://doi.org/10.1007/s00216-020-02494-y