DOI QR코드

DOI QR Code

슬래그 미분말 혼합 콘크리트의 공극구조와 염화물 확산계수와의 관계에 대한 실험적 연구

An Experimental Study on Relation between Chloride Diffusivity and Microstructural Characteristics for GGBS Concrete

  • 김태상 (한국건자재시험연구원 건설기반기술센터) ;
  • 정상화 (한국건자재시험연구원 건설기반기술센터) ;
  • 최영철 (한국건자재시험연구원 건설기반기술센터) ;
  • 송하원 (연세대학교 사회환경시스템공학부)
  • Kim, Tae-Sang (Construction Material Research Center, Korea Institute of Construction Materials) ;
  • Jung, Sang-Hwa (Construction Material Research Center, Korea Institute of Construction Materials) ;
  • Choi, Young-Cheol (Construction Material Research Center, Korea Institute of Construction Materials) ;
  • Song, Ha-Won (Dept. of Civil and Environmental Engineering, Yonsei University)
  • 발행 : 2009.10.31

초록

바닷물에 의한 염해와 동결융해 환경에 노출된 철근 콘크리트구조물의 내구성을 평가하기 위해서는 콘크리트의 미세구조적 특성 및 염화물 침투성에 대한 콘크리트의 확산 저항성을 동시에 분석하는 것이 중요하다. 이 연구에서는 고로슬래그 미분말(GGBS)을 혼합한 콘크리트에 대하여 수은압입법(MIP)에 의해 얻어진 콘크리트의 미세공극 구조와 장기 및 단기 재령의 염화물 확산성과의 상관성에 대하여 연구하였다. 물시멘트비는 40, 45, 50%로 변화시키고, 단위시멘트량을 300, 350, 400, 450 kg/$m^3$으로 변화시킨 OPC 및 GGBS 콘크리트 시편에 대하여 동결융해에 의해 손상된 GGBS 콘크리트에서의 확산성과 미세구조의 변화를 관찰하였다.

In order to evaluate the durability of reinforced concrete structures under chloride attack from sea water and frost damage, it is important to analyze both the microstructural characteristics of concrete and its diffusion resistance of concrete against chloride ingress. In this study, a relation between micro-pore structures of concrete obtained by the Mercury Intrusion Porosimetry and accelerated chloride diffusivity as well as long term chloride diffusivity were studied for ground granulated blast furnace slag(GGBS) concrete. Different water-cement ratio of 40, 45, 50% and different unit cement concrete of 300, 350, 400 or 450 kg/$m^3$ of the GGBS concrete along with OPC concrete were used and freeze and thawing, and the change in diffusivity and microstructure were observed for both GGBS concrete and damaged GGBS concrete due to rapid freezing and thawing.

키워드

참고문헌

  1. 송하원, 권성준, 변근주, 박찬규, "혼화재를 사용한 고성능 콘크리트의 배합특성을 고려한 염화물 확산 해석기법에 관한 연구," 대한토목학회 논문집, 25권, 1A호, 2005, pp. 213-223
  2. Song, H. W., Kim, H. J., Saraswathy, V., and Kim, T. H., "A Micro-mechanics Based Corrosion Model for Predicting the Service Life of Reinforced Concrete Structures," Int J. Electro Sci., Vol. 2, No. 4, 2007, pp. 341-354
  3. Maekawa, K., Chaube, R., and Kishi, T., Modeling of Concrete Performance: Hydration, Microstructure Formation and Mass Transport, Routledge, London and New York, 1999, 44 pp
  4. Song, H. W., Pack, S. W., Lee, C. H., and Kwon, S. J., Service Life Prediction of Concrete Structures under Marine Environment Considering Coupled Deterioration, J. of Restoration of Buildings and Monuments, Vol. 12, No. 4, 2006, pp. 265-284
  5. Ishida, T., Maekawa, K., and Kishi, T., "Enhanced Modeling of Moisture Equilibrium and Transport in Cementitious Materials under Arbitrary Temperature and Relative Humidity History," Cement and Concrete Research, Vol. 37, No. 4, 2007, pp. 565-578 https://doi.org/10.1016/j.cemconres.2006.11.015
  6. Song, H. W., Lee, C. H., Jung, M. S., and Ann, K. Y., "Development of Chloride Binding Capacity in Cement Pastes and the Influence of the pH of Hydration Products," Canadian Journal of Civil Engineering, Vol. 35, No. 12, 2008, pp. 1427-1434 https://doi.org/10.1139/L08-089
  7. Mehta, P. K., Monteiro, P. J. M., Concrete: Structure, Properties, and Materials, Prentice Hall, New Jersey, 1993, 31 pp
  8. Winslow, D. N. and Diamond, S., "A Mercury Porosimetry stSdy of the Evolution of Porosity in Cement," ASTM J. Materials, Vol. 5, No. 3, 1970, pp. 564-585
  9. Ritter, H. L. and Drake, L. C., “Pore-size Distribution in Porous Materials,” Industrial and Engineering Chemistry, 17, 1945, 782 pp.
  10. Winslow, D. Liu, "Pore Structure of Cement Paste in Concrete," Cem. Concr. Res., Vol. 20, No. 2, 1990, pp. 227-235 https://doi.org/10.1016/0008-8846(90)90075-9
  11. Breugel, Simulation of Hydration and Formation of Structure in Hardening Cement-Based Materials, Delft, 1991, 74 pp.
  12. Bentz, D. P. and Garboczi, E. J., "Water Permeability and Chloride Ion Diffusion in Portland Cement Mortars," Cem. Concr. Res., Vol. 25, No. 4, 1995 pp. 790-802 https://doi.org/10.1016/0008-8846(95)00069-O
  13. Garboczi, E. J., "Permeability, Diffusivity, and Microstructural Parameters: A Critical Review," Cem. Concr. Res. Vol. 20, No. 4, 1990., pp. 591-601 https://doi.org/10.1016/0008-8846(90)90101-3
  14. Cook, R. A. and Hover, K. C., "Mercury Porosimetry of Hardened Cement Pastes," Cem. Concr. Res., Vol. 29, No. 6, 1999, pp. 933-943 https://doi.org/10.1016/S0008-8846(99)00083-6
  15. Whiting, D., "Rapid Measurements of Chloride Permeability of Concrete," Public Roads, Vol. 45, No. 3, 1981, pp. 101-112
  16. Feldman, R. F., Chan, G. W., Brousseau, R. J., and Tumida-jski, P. J., "Investigation of the Chloride Permeability Test," ACI Mater. J., Vol. 91, No. 2, 1994, pp. 246-255
  17. Feldman, R. F., Prudencio Jr., L. R., and Chan, G., "Rapid Chloride Permeability Test on Blended Cement and Other Concretes: Correlations between Charge, Initial Current and Conductivity," Constr. Build. Mat., Vol. 13, No. 3, 1999 pp. 149-154 https://doi.org/10.1016/S0950-0618(98)00033-6
  18. Sugiyama, T., Tsuji, Y., and Bremner, T. W., "Relationship between Coulomb and Migration Coefficient of Chloride Ions for Concrete in a Steady-state Chloride Migration Test," Mag. Concr. Res., Vol. 53, No. 1, 2001, pp. 13-24 https://doi.org/10.1680/macr.2001.53.1.13
  19. Truc, O., Ollivier, J. P., and Carcasses, M., "A New Way for Determining the Chloride Diffusion Coefficient in Concrete from Steady State Migration Test," Cem. Concr. Res., Vol. 30, No. 7, 2000, pp. 217-226 https://doi.org/10.1016/S0008-8846(99)00232-X
  20. Castellote, M., Andrade, C., and Alonso, C., "Measurement of the Steady and Nonsteady-state Chloride Diffusion Coefficients in a Migration Test by Means of Monitoring the Conductivity in the Anolyte Chamber Comparison with Natural Diffusion Tests," Cem. Concr. Res., Vol. 31, No. 10, 2001, pp. 1411-1420 https://doi.org/10.1016/S0008-8846(01)00562-2
  21. Tang, L. and Nilsson, L. O., "Rapid Determination of Chloride Diffusivity of Concrete by Applying an Electric Field," ACI Mater. J., Vol. 89, No. 1, 1992, pp. 49-53
  22. 김성운, 박상준, "염해 내구성 콘크리트의 제조 및 시공," 콘크리트구조물의 염해 내구성에 관한 국제 심포지엄, 한국콘크리트학회, 2006, pp. 119-155
  23. Pogeon, M. and Pleau, R. Durability of Concrete in Cold Climates, E&FN Spon, 1995, 12 pp
  24. Powers, T. C., "The Mechanisms of Frost Action in Concrete," Stanton Walker Lecture Series on the Material Science, 1965, 3 pp
  25. Setzer, M. J., Development of the Micro-ice-lens Model. Frost Resistance of Concrete, Essen, Germany, RILEM, 2002, pp. 133-146
  26. Halamickova, P., Detwiler, R. J., Bentz, D. P., and Garboczi, E. J., "Water Permeability and Chloride Ion Diffusion in Portland Cement Mortars: Relationship to Sand Content and Critical Pore Diameter," Cem. Concr. Res., Vol. 25, No. 4,1995, pp. 790-802 https://doi.org/10.1016/0008-8846(95)00069-O
  27. 조태준, 김이현, 조효남, "콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발," 콘크리트학회 논문집, 20권, 1호, 2008, pp. 13-22 https://doi.org/10.4334/JKCI.2008.20.1.013
  28. Mihashi, H. and Zhou, Z. Y., "Micro Mechanics Model to Predict Macroscopic Behavior of Concrete under Frost Action," RILEM Proceeding, Pro. 24, 1997, pp. 235-241

피인용 문헌

  1. Hydration of High-volume GGBFS Cement with Anhydrite and Sodium Sulfate vol.27, pp.2, 2015, https://doi.org/10.4334/JKCI.2015.27.2.177
  2. Performance Based Evaluation of Concrete Chloride Diffusion Resistance from Wind Speed-Sunlight Exposure Time Curing Conditions of Climate Change vol.28, pp.5, 2016, https://doi.org/10.4334/JKCI.2016.28.5.601
  3. Prediction of Chloride Penetration Depth Rate and Diffusion Coefficient Rate of Concrete from Curing Condition Variations due to Climate Change Effect vol.13, pp.1, 2019, https://doi.org/10.1186/s40069-019-0333-4