DOI QR코드

DOI QR Code

Tensile Deformation Characteristics of ECC Predicted with a Modified Fiber Bridging Curve

수정된 섬유 가교 특성을 고려한 ECC의 인장변형특성

  • Kim, Jeong-Su (Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Bang-Yeon (Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jin-Keun (Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Yun-Yong (Dept. of Civil Engineering, Chungnam National University)
  • 김정수 (한국과학기술원 건설 및 환경공학과) ;
  • 이방연 (한국과학기술원 건설 및 환경공학과) ;
  • 김진근 (한국과학기술원 건설 및 환경공학과) ;
  • 김윤용 (충남대학교 토목공학과)
  • Published : 2009.10.31

Abstract

A theoretical prediction model of fiber bridging curve was established based on the assumption that fibers are uniformly distributed on the crack surface. However, the distance between fibers and their orientation with respect to crack surface can greatly affect the prediction of fiber bridging curve. Since, the shape of fiber bridging curve is a critical factor for predicting the tensile stress-strain relationship of ECC, it is expected that the assumption of uniform distribution of fiber may cause a significant error when predicting the tensile behavior of ECC. To overcome this shortcoming, a new prediction method of stress-strain relation of ECC is proposed based on the modified fiber bridging curve. Only effective fibers are taken into account considering the effects of their orientation and distance between them. Moreover, the approach for formulating the tensile stress-strain relation is discussed, where a procedure is presented for obtaining important parameters, such as the first crack strength, the peak stress, the displacement at peak stress, tensile strain capacity, and the crack spacing. Subsequent uniaxial tensile tests were performed to validate the proposed method. It was found that the predicted stress-strain relations obtained based on the proposed modified fiber bridging curve exhibited a good agreement with experimental results.

지금까지 ECC의 인장거동 예측에 대한 이론적인 연구는 균열면에서 섬유가 균일하게 분산되어 있다고 가정하고 섬유 가교 곡선을 유도하는 방법으로 수행되었으며, 섬유의 기울어진 각도와 섬유사이의 간격은 섬유 가교 곡선을 예측하는데 큰 영향을 준다. 그러나 이론적으로 유도된 방법은 섬유의 기울어진 각도와 섬유 간격에 따라서 섬유가교 곡선의 형태가 달라지는 것을 모사하지 못하여 실제 섬유 가교 곡선과 차이를 보이며, ECC 인장거동을 예측할 때 큰 오차가 발생할 수 있다. 이 연구에서는 이러한 문제점을 해결하기 위하여 균열면에서 섬유 가교 작용에 기여하는 유효 섬유의 개수를 섬유의 기울어진 각도와 섬유 간격에 따라 고려한 후, 수정된 섬유 가교 곡선을 구하고, 이를 이용하여 보다 합리적인 ECC의 인장거동 예측기법을 제시하였다. 또한, 인장거동 예측에 중요한 변수인 초기 균열 강도, 섬유 가교 곡선에서의 최고 응력과 변위, 인장변형률, 균열간격을 구하기 위한 방법과 절차를 제시하였다. 그리고 예측 방법의 타당성을 평가하기 위하여 수정된 섬유 가교 곡선과 이론적인 섬유 가교 곡선으로 구한 ECC의 인장거동을 실험 결과와 비교하였다. 수정된 섬유 가교 곡선을 사용할 경우, 실험 결과와 잘 일치함을 알 수 있었으며, ECC의 인장거동을 합리적으로 예측할 수 있을 것으로 판단된다.

Keywords

References

  1. Li, V. C. and Wu, H. C., "Conditions for Pseudo Strainhardening in Fiber Reinforced Brittle Matrix Composites," Journal Applied Mechanics Review, Vol. 45, No. 8, 1992, pp. 390-398 https://doi.org/10.1115/1.3119767
  2. Fischer, G. and Li, V. C., "Effect of Matrix Ductility on Deformation Behavior of Steel Reinforced ECC Flexural Members under Reversed Cyclic Loading Conditions," ACI Structural Journal, Vo1. 99, No. 6, 2002, pp. 781-790
  3. Kanda, T. and Li, V. C., "Practical Design Criteria for Saturated Pseudo Strain Hardening Behavior in ECC," Journal of Advanced Concrete Technology, Vol. 4, No. 1, 2006, pp. 59-72 https://doi.org/10.3151/jact.4.59
  4. Z. Lin, Kanda, T., and Li, V. C., "On Interface Property Characterization and Performance of Fiber Reinforced Cementitious Composites," Journal of Concrete Science and Engineering, RlLEM, Vol. 1, 1999, pp. 173-184
  5. Kanda, T. and Li, V. C., "Interface Property and Apparent Strength of a High Strength Hydrophilic Fiber in Cement Matrix," ASCE Journal of Materials in Civil Engineering, Vol. 10, No. 1, 1998, pp. 5-13 https://doi.org/10.1061/(ASCE)0899-1561(1998)10:1(5)
  6. Li, V. C. and Leung, C. K. Y., "Steady State and Multiple Cracking of Short Random Fiber Composites," ASCE Journal of Engineering Mechanics, Vol. 188, No. 11, 1992, pp. 2246-2264 https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246)
  7. Marshall, D. B. and Cox, B. N., "A J-integral Method for Calculating Steady-state Matrix Cracking Stresses in Composites," Mechanics of Materials, Vol. 7, No. 2, 1988, pp. 127-133 https://doi.org/10.1016/0167-6636(88)90011-7
  8. Kanda, T. and Li, V. C., "Multiple Cracking Sequence and Saturation in Fiber Reinforced Cementitious Composites," Concrete Research and Technology JCI, Vol. 9, No. 2, 1998, pp. 19-33 https://doi.org/10.3151/crt1990.9.2_19
  9. 김윤용, 이방연, 김진근, "PVA-ECC 단면 이미지의 섬유 분류 및 검출 기법," 콘크리트학회 논문집, 20권, 4호, 2008, pp. 601-608 https://doi.org/10.4334/JKCI.2008.20.4.513
  10. Wu, H. C. and Li, V. C., "Snubbing and Bundling Effects on Multiple Crack Spacing of Discontinuous Randon Fiber-Reinforced Brittle Matrix Composites," Journal of American Ceramic Society, Vol. 75, No. 12, 1992, pp. 3487-3479 https://doi.org/10.1111/j.1151-2916.1992.tb04457.x
  11. 김윤용, 김정수, 김희신, 하기주, 김진근, "마이크로역학에 의하여 설계된 ECC(Engineered Cementitious Composite)의 역학적 특성," 콘크리트학회 논문집, 17권, 5호, 2005, pp. 709-716 https://doi.org/10.4334/JKCI.2005.17.5.709
  12. Kim, J. K., Kim, J. S., Ha, G. J., and Kim, Y. Y., "Tensile and Fiber Dispersion Performance of ECC Produced with Slag Particles," Cement and Concrete Research, Vol. 37, No. 7, 2007, pp. 1096-1105 https://doi.org/10.1016/j.cemconres.2007.04.006
  13. Li, V. C. and Obla, K., "Effect of Fiber Diameter Variation on Properties of Cement Based Matrix Fiber Reinforced Composites," Composites Engineering International Journal Part B 27B, 1996, pp. 275-284 https://doi.org/10.1016/1359-8368(95)00031-3

Cited by

  1. Analytical Models for the Prediction of the Flexural Behavior for Thermal Bridge Breaker Systems embedded in Reinforced Concrete Slabs vol.28, pp.3, 2015, https://doi.org/10.7734/COSEIK.2015.28.3.325