DOI QR코드

DOI QR Code

Fabrication of Metal-insulator-metal Capacitors with SiNx Thin Films Deposited by Plasma-enhanced Chemical Vapor Deposition

  • Wang, Cong (RFIC Center, Department of Electronic Engineering, Kwangwoon University) ;
  • Kim, Nam-Young (RFIC Center, Department of Electronic Engineering, Kwangwoon University)
  • Published : 2009.10.31

Abstract

For integrated passive device (IPD) applications, we have successfully developed and characterized metalinsulator-metal (MIM) capacitors with 2000 $\AA$ plasma-enhanced chemical vapor deposition (PECVD) silicon nitride which are deposited with the $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $250^{\circ}C$. Five PECVD process parameters are designed to lower the refractive index and lower the deposition rate of $Si_3N_4$ films for the high breakdown electric field. For the PECVD process condition of gas mixing rate (0.957), working pressure (0.9 Torr), and RF power (60 W), the atomic force microscopy (AFM) root mean square (RMS) value of about 2000 $\AA$ $Si_3N_4$ on the bottom metal is lowest at 0.862 nm and the breakdown electric field is highest at about 8.0 MV/cm with a capacitance density of 326.5 pF/$mm^2$. A pretreatment of metal electrodes is proposed, which can reduce the peeling of nitride in the harsh test environment of heat, pressure, and humidity.

Keywords

References

  1. R. Ulrich and L. Schaper, Integrated Passive Component Technology, (IEEE Press/Wiley, New York, 2003), p. 23
  2. J. G. Tenedorio and P. A. Terizian, IEEE Electron Device Lett. 5, 199 (1984) https://doi.org/10.1109/EDL.1984.25886
  3. E. Y. Chang, G. T. Cibuzar, and K. P. Pande, IEEE Trans. Electron Devices, 35, 1412 (1988) https://doi.org/10.1109/16.2573
  4. Y. C. Chou, R. Lai, G. P. Li, H. Jun, P. Nam, R. Grundbacher, H. K. Kim, Y. Ra, M. Biedenbender, E. Ahlers, M. Barsky, A. Oki, and D. Streit, IEEE Electron Device Lett. 24, 7 (2003) https://doi.org/10.1109/LED.2002.807313
  5. R. T. Yoshioka, L. E. M. de Barros, J. A. Diniz, and J. W. Swart, Int. Microw. Symp., (SBMO/IEEE MTT-S, APS and LEOS-IMOC California, USA, 1999), p. 108 https://doi.org/10.1109/IMOC.1999.867064
  6. C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, Appl. Phys. Lett. 51, 33 (1987) https://doi.org/10.1063/1.98877
  7. A. Kapila, V. Malhotra, L. H. Camnitz, K. L. Seaward, and D. Mars, J. Vac. Sci. Technol. B, 13, 10 (1995) https://doi.org/10.1116/1.588001
  8. G. B. Park, Trans. Electr. Electron. Mater. 9, 231 (2008) https://doi.org/10.4313/TEEM.2008.9.6.231
  9. T. Matsuo, M. Esashi, and H. Abe, IEEE Trans. Electron Devices, 26, 1939 (1979) https://doi.org/10.1109/T-ED.1979.19780
  10. J. Scarpulla, D. Eng, S. Olson, and C. S. Wu, IEEE Int. Rel. Phys. Symp., (IEEE, San Diego, USA, 1999), p. 128
  11. H. Y. Li, Y. M. Khoo, N. Khan, K. W. Teoh, V. S. Rao, H. B. Li, E. B. Liao, S. Mohanraj, V. Kripesh, and K. Rakesh, IEEE Electr. Compon. Tech. Conf., (IEEE, Florida, USA, 2008), p. 1709 https://doi.org/10.1109/ECTC.2008.4550210
  12. C. Wang, C. Qian, G. I. Kyung, B. Shrestha, and N. Y. Kim, IEEE Asia Pac. Microw. Conf., (IEEE, Hong Kong, China, 2008)
  13. Y. T. Kim, S. M. Cho, H. Y. Lee, H. D. Yoon, and D. H. Yoon, Surf. Coat. Technol. 174, 166 (2003) https://doi.org/10.1016/S0257-8972(03)00603-0
  14. Y. T. Kim, S. M. Cho, Y. G. Seo, H. D. Yoon, Y. M. Im, S. J. Suh, and D. H. Yoon, Surf. Coat. Technol. 171, 34 (2002) https://doi.org/10.1016/S0257-8972(03)00232-9
  15. J. Y. Sin, H. D. Park, K. J. Choi, K. W. Lee, J. Y. Lee, and J. W. Hong, Trans. Electr. Electron. Mater. 10, 97 (2009) https://doi.org/10.4313/TEEM.2009.10.3.097
  16. M. S. Jeon and K. Kamisako, Trans. Electr. Electron. Mater. 10, 75 (2009) https://doi.org/10.4313/TEEM.2009.10.3.075

Cited by

  1. High performance WLAN balun using integrated passive technology on SI-GaAs substrate vol.54, pp.5, 2012, https://doi.org/10.1002/mop.26801
  2. Optimization of NiCr Thin Film Resistor on Semi-insulating-GaAs Substrate in Advanced Integrated Passive Device Process vol.58, pp.4, 2012, https://doi.org/10.4103/0377-2063.102306
  3. The Influence of Electrodes Deposition on the Interface and Dielectric Characteristics of Polymer Gate for Thin Films Transistors vol.1143, 2017, https://doi.org/10.4028/www.scientific.net/AMR.1143.227
  4. Etch Properties of TiN Thin Film in Metal–Insulator–Metal Capacitor Using Inductively Coupled Plasma vol.50, pp.8S2, 2011, https://doi.org/10.7567/JJAP.50.08KC01
  5. Investigation of high performance Edge Lifted Capacitors reliability for GaAs and GaN MMIC technology vol.54, pp.12, 2014, https://doi.org/10.1016/j.microrel.2014.09.023
  6. Morphological and electrical properties of SrTiO3/TiO2/SrTiO3sandwich structures prepared by plasma sputtering vol.26, pp.1, 2017, https://doi.org/10.1088/1674-1056/26/1/010702
  7. Analytical optimization of high-performance and high-yield spiral inductor in integrated passive device technology vol.43, pp.3, 2012, https://doi.org/10.1016/j.mejo.2011.12.011
  8. Dry etching of TaN thin film using CH4/Ar inductively coupled plasma vol.86, pp.1, 2011, https://doi.org/10.1016/j.vacuum.2011.03.018
  9. Etch Properties of TiN Thin Film in Metal–Insulator–Metal Capacitor Using Inductively Coupled Plasma vol.50, pp.8, 2011, https://doi.org/10.1143/JJAP.50.08KC01
  10. Design of High-performance Wilkinson Power Divider on SI-GaAs Substrate using Integrated Passive Technology vol.58, pp.4, 2012, https://doi.org/10.4103/0377-2063.102313
  11. Ultra-smooth BaTiO3 surface morphology using chemical mechanical polishing technique for high-k metal-insulator-metal capacitors vol.40, 2015, https://doi.org/10.1016/j.mssp.2015.07.016
  12. A Novel Silicon-Based Packaging Platform for High-Efficiency LED Modules vol.314-316, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.314-316.359
  13. Si3N4 Double Passivation Methods for Optimizing the DC Properties in a Gamma-Gate AlGaN/GaN HEMT Using Plasma Enhanced Chemical Vapor Deposition vol.311-313, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.311-313.1793