References
- Wood, A. J., and Wollenberg, B. F., Power Generation, Operation, and Control. New York, John Wiley & Sons, Inc., 1984
- Burns, R. M., and Gibson, C. A., 'Optimization of priority lists for a unit commitment program', Proc. IEEE Power Engineering Society Summer Meeting, Paper A, 75 453-1, 1975
- Sheble, G. B., 'Solution of the unit commitment problem by the method of unit periods', IEEE Trans. on Power Systems, Vol. 5, No. 1, pp. 257-260, Feb. 1990 https://doi.org/10.1109/59.49114
- Snyder Jr., W. L., Powell Jr., H. D., and Rayburn, J. C., 'Dynamic programming approach to unit commitment' IEEE Trans. on Power Apparatus and Systems, Vol. PAS-2, pp. 339-350, May 1987
- Ouyang, Z., and Shahidehpour, S. M., 'An intelligent dynamic programming for unit commitment application', IEEE Trans. on Power Systems, Vol. 6, No. 3, pp. 1203-1209, Aug. 1991 https://doi.org/10.1109/59.119267
- Merlin, A., and Sandrin, P., 'A new method for unit commitment at Electricite de France', IEEE Trans. on Power Apparatus and Systems, Vol. PAS-102, pp. 1218-1255, May 1983 https://doi.org/10.1109/TPAS.1983.318063
- Zhuang, F., and Galiana, F. D., 'Toward a more rigorous and practical unit commitment by Lagrangian relaxation', IEEE Trans. on Power Systems, Vol. 3, No. 2, pp. 763-770, May 1988 https://doi.org/10.1109/59.192933
- Cohen, A. I., and Yoshimura, M., 'A branch-andbound algorithm for unit commitment', IEEE Trans. on Power Apparatus and Systems, Vol. PAS-102, pp. 444-451, Feb. 1983 https://doi.org/10.1109/TPAS.1983.317714
- Muckstadt, J. A., and Wilson, R. C., 'An application of mixed-integer programming duality to scheduling thermal generating systems', IEEE Trans. on Power Apparatus and Systems, pp. 1968-1978, 1968
- Kazarlis, S. A., Bakirtzis, A. G., and Petridis, V., 'A genetic algorithm solution to the unit commitment problem', IEEE Trans. on Power Systems, Vol. 11, No. 1, pp. 83-92, Feb. 1996 https://doi.org/10.1109/59.485989
- Swarup, K. S., and Yamashiro, S., 'Unit commitment solution methodology using genetic algorithm', IEEE Trans. on Power Systems, Vol. 17, pp. 87-91, Feb. 2002 https://doi.org/10.1109/59.982197
- Juste, K. A., Kita, H., Tanaka, E., and Hasegawa, J., 'An evolutionary programming solution to the unit commitment problem', IEEE Trans. on Power Systems, vol. 14, pp. 1452-1459, Nov. 1999 https://doi.org/10.1109/59.801925
- Chen, H, and Wang, X., 'Cooperative coevolutionary algorithm for unit commitment', IEEE Trans. on Power Systems, vol. 16, pp. 128-133, Feb. 2002
- Zhuang, F., and Galiana, F. D., 'Unit commitment by simulated annealing', IEEE Trans. on Power Systems, Vol. 5, No. 1, pp. 311-317, Feb. 1990 https://doi.org/10.1109/59.49122
- Simopoulos, D. N., Kavatza, S. D., and Vournas, C. D., 'Unit commitment by an enhanced simulated annealing algorithm', IEEE Trans. on Power Systems, Vol. 21, No. 1, pp. 68-76, Feb. 2006 https://doi.org/10.1109/TPWRS.2005.860922
- Zhao, B., Guo, C. X., Bai, B. R., and Cao, Y. J., 'An improved particle swarm optimization algorithm for unit commitment', Electrical Power & Energy Systems,Vol. 28, Issue 7, pp. 482-490, Sep. 2006 https://doi.org/10.1016/j.ijepes.2006.02.011
- Storn, R., and Price, K., 'Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces', Journal of Global Optimization, Vol. 11, pp. 341-359, 1997 https://doi.org/10.1023/A:1008202821328
- Chang, C. Wong, J., Chiou, J., and Su, C., 'Robust searching hybrid differential evolution method for optimal reactive power planning in large-scale distribution systems', Electric Power Systems Research, pp. 1-8, May 2006
- Arora, J.S., Introduction to Optimum Design, McGraw-Hill, Inc., 1989
Cited by
- A Modified Differential Evolution Algorithm for the Solution of a Large-Scale Unit Commitment Problem vol.39, pp.12, 2014, https://doi.org/10.1007/s13369-014-1389-8
- Evaluation of Two Lagrangian Dual Optimization Algorithms for Large-Scale Unit Commitment Problems vol.7, pp.1, 2012, https://doi.org/10.5370/JEET.2012.7.1.17
- Solution to unit commitment in power system operation planning using binary coded modified moth flame optimization algorithm (BMMFOA): A flame selection based computational technique 2017, https://doi.org/10.1016/j.jocs.2017.04.011
- Hybrid HS–random search algorithm considering ensemble and pitch violation for unit commitment problem vol.28, pp.5, 2017, https://doi.org/10.1007/s00521-015-2114-6
- A novel hybrid DE–random search approach for unit commitment problem vol.28, pp.7, 2017, https://doi.org/10.1007/s00521-015-2124-4
- Binary Grey Wolf Optimizer for large scale unit commitment problem vol.38, 2018, https://doi.org/10.1016/j.swevo.2017.08.002
- A binary-real-coded differential evolution for unit commitment problem vol.42, pp.1, 2012, https://doi.org/10.1016/j.ijepes.2012.04.048
- A solution to energy and environmental problems of electric power system using hybrid harmony search-random search optimization algorithm vol.3, pp.1, 2016, https://doi.org/10.1080/23311916.2016.1175059
- Unit commitment problem with ramp rate constraint using a binary-real-coded genetic algorithm vol.13, pp.9, 2013, https://doi.org/10.1016/j.asoc.2013.05.002
- Binary-Real Coded Genetic Algorithm Based <i>k</i>-Means Clustering for Unit Commitment Problem vol.06, pp.11, 2015, https://doi.org/10.4236/am.2015.611165
- Implementation of hybrid harmony search/random search algorithm for single area unit commitment problem vol.77, 2016, https://doi.org/10.1016/j.ijepes.2015.11.045
- Binary whale optimization algorithm and its application to unit commitment problem pp.1433-3058, 2020, https://doi.org/10.1007/s00521-018-3796-3
- Modified Binary Differential Evolution Algorithm to Solve Unit Commitment Problem pp.1532-5016, 2018, https://doi.org/10.1080/15325008.2018.1510445