DOI QR코드

DOI QR Code

Design of a Cascaded Distributed Amplifier using Medium Power Devices

중간전력 소자를 이용한 직렬 분포형 증폭기 설계

  • Cha, Hyeon-Won (Department of Electrical and Communication Engineering, Soonchunhyang University) ;
  • Koo, Jae-Jin (Department of Electrical and Communication Engineering, Soonchunhyang University) ;
  • Lim, Jong-Sik (Department of Electrical and Communication Engineering, Soonchunhyang University) ;
  • Ahn, Dal (Department of Electrical and Communication Engineering, Soonchunhyang University)
  • 차현원 (순천향대학교 전기통신공학과) ;
  • 구재진 (순천향대학교 전기통신공학과) ;
  • 임종식 (순천향대학교 전기통신공학과) ;
  • 안달 (순천향대학교 전기통신공학과)
  • Published : 2009.08.31

Abstract

A design of cascaded distributed amplifier with a broadband amplification is described in this paper. A medium power device with 23dBm, max output power under the optimal narrow-band power matching condition is adopted for the design and fabrication of the cascaded distributed amplifier. In general, conventional distributed amplifiers with the parallel connected input ports have a low gain, and previous cascaded distributed amplifiers show a relatively low output power of 10dBm at most, which is the upper limit of small signal amplification. However, the cascaded distributed amplifier in this paper shows the gain of $18.15{\pm}0.75dB$ and output power of 20dBm over $300MHz{\sim}2GHz$ from the measurement, so it can be well adopted as a wideband driver amplifier.

본 논문에서는 출력전력이 협대역 정합에서 최대 23dBm 정도인 중간전력급 증폭소자를 이용하여 광대역 이득을 갖는 직렬 분포형 증폭기 설계에 대하여 기술한다. 일반적으로 병렬 분포형 증폭기는 1단 증폭기처럼 이득이 낮고, 직렬 분포형 증폭기는 이득이 높은 반면에 출력전력의 크기가 10dBm 이내인 소신호 증폭기였던데 비하여, 본 논문에서는 광대역에서 출력 전력이 20dBm급인 직렬 분포형 증폭기에 대하여 기술한다. 실제로 제작한 증폭기는 $300MHz{\sim}2GHz$에서 $18.15{\pm}0.75dB$의 평탄한 이득과 $19{\sim}20dBm$의 출력전력 특성을 보이는 것으로 측정되어, 광대역에서 구동증폭기로 사용할 수 있음을 보여준다.

Keywords

References

  1. J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G. Hohenwarter, "MESFET distributed amplifier design guidelines," IEEE Trans. Microwave Theory Tech., vol. MTT-32, No. 3, pp. 268-275, Mar. 1984. https://doi.org/10.1109/TMTT.1984.1132664
  2. Bal S. Virdee, Ben Y. Banyamain "Broadband Microwave Amplifier," Artech House, 2004.
  3. Rowan Gilmore, Les Besser, "Practical RF circuit design for modern wireless systems," Artech House, 2003.
  4. Thomas T. Y, "Fundamentals of Distributed Amplifier," Artech House, 2003.
  5. C. S. Aitchison, "The intrinsic noise figure of the MESFET distributed amplifier," IEEE Trans. Microwave Theory Tech., vol. MTT-31, No. 6, pp. 460-466, Jun. 1985. https://doi.org/10.1109/TMTT.1985.1133100
  6. B. J. Minnis, "The Traveling Wave Matching Technique For Cascadable MMIC Amplifiers," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 4, pp. 690-692, Apr. 1994. https://doi.org/10.1109/22.285081
  7. B. Y. Banyamin and M. Berwick, "The gain advantages of four cascaded single stage distributed amplifier configurations," in IEEE MTT-S Int Microwave Symp. Dig., Boston, MA, pp. 1325-1328, Jun. 2000. https://doi.org/10.1109/MWSYM.2000.861764
  8. B. Y. Banyamin, M. Berwick, "Analysis of the Performance of Four-Cascaded Single-Stage Distributed Amplifier", IEEE Trans Microw. Theory Tech., Vol. 48, No. 12, pp. 2657-2663, Dec. 2000. https://doi.org/10.1109/22.899027
  9. D. M. Pozar, "Microwave Engineering", Second edition, John Wiely and Sons, Inc., New York, 1998.
  10. G. Gonzalez, "Microwave Transistor Amplifiers analysis and design", Second edition, Prentice-Hall, New Jersey, 1997.