DOI QR코드

DOI QR Code

Molecular Cloning and Expression of the Trichoderma harzianum C4 Endo-${\beta}-1$,4-Xylanase Gene in Saccharomyces cerevisiae

  • Lee, Jung-Min (Skin Biotechnology Center, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Shin, Ji-Won (Skin Biotechnology Center, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Nam, Jae-Kook (Skin Biotechnology Center, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Choi, Ji-Young (School of Biological Sciences, University of Ulsan) ;
  • Jeong, Choon-Soo (School of Biological Sciences, University of Ulsan) ;
  • Han, In-Seob (School of Biological Sciences, University of Ulsan) ;
  • Nam, Soo-Wan (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Choi, Yun-Jaie (Department of Food and Animal Biotechnology, Seoul National University) ;
  • Chung, Dae-Kyun (Skin Biotechnology Center, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
  • Published : 2009.08.31

Abstract

An endo-${\beta}-1$,4-xylanase (${\beta}$-xylanase) from Trichoderma harzianum C4 was purified without cellulase activity by sequential chromatographies. The specific activity of the purified enzyme preparation was 430 units/mg protein on D-xylan. The complementary DNA (cDNA) encoding ${\beta}$-xylanase (xynII) was amplified by PCR and isolated from cDNA PCR libraries constructed from T. harzianum C4. The nucleotide sequence of the cDNA fragment contained an open reading frame of 663 bp that encodes 221 amino acids, of which the mature protein is homologous to several ${\beta}$-xylanases II. An intron of 63 bp was identified in the genomic DNA sequence of xynII. This gene was expressed in Saccharomyces cerevisiae strains under the control of adh1 (alcohol dehydrogenase I) and pgk1 (phosphoglycerate kinase I) promoters in 2 ${\mu}$-based plasmids, which could render recombinants able to secrete ${\beta}$-xylanase into the media.

Keywords

References

  1. Biely, P., C. R. Mackenzie, J. Plus, and H. Schneider. 1986. Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Bio/Technology 4: 731-733 https://doi.org/10.1038/nbt0886-731
  2. Calmels, T. P. G., F. Martin, H. Durand, and G. Tiraby. 1991. Proteolytic events in processing of secreted proteins in fungi. J. Biotechnol. 17: 51-66 https://doi.org/10.1016/0168-1656(91)90026-R
  3. Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanases families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23 https://doi.org/10.1016/j.femsre.2004.06.005
  4. Denis, C. L., J. Ferguson, and E. T. Young. 1983. mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease pon growth on a nonfermentable carbon source. J. Biol. Chem. 258: 1165-1171
  5. Goller, S. P., D. Schoisswohl, M. Baron, M. Parric, and C. P. Kubicek. 1998. Role of endoproteolytic dibasic protein processing in maturation of secretory proteins in Trichoderma reesei. Appl. Environ. Microbiol. 64: 3202-3208
  6. de Vries, R. P., H. C. Kester, C. H. Polusen, J. A. Benen, and J. Visser. 2000. Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr. Res. 327: 402-410 https://doi.org/10.1016/S0008-6215(00)00066-5
  7. Hardjito, L., P. F. Greenfield, and P. L. Lee. 1993. Recombinant protein production via fed-batch culture of the yeast Saccharomyces cerevisiae. Enzyme Microbiol. Technol. 15: 120-126 https://doi.org/10.1016/0141-0229(93)90035-Z
  8. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1952. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275
  9. Mandels, M. and R. E. Anderotti. 1978. The cellulose to cellulase fermentation. Proc. Biochem. 13: 6-113
  10. Nacken, V., T. Achstetter, and E. Degryse. 1996. Probing the limits of expression levels by varying promoter strength and plasmid copy number in Saccharomyces cerevisiae. Gene 175: 253-260 https://doi.org/10.1016/0378-1119(96)00171-0
  11. Polizeli, M. L. T. M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591 https://doi.org/10.1007/s00253-005-1904-7
  12. Pronk, J. T. 2002. Auxotrophic strains in fundamental and applied research. Appl. Environ. Microbiol. 68: 2095-2100 https://doi.org/10.1128/AEM.68.5.2095-2100.2002
  13. Uffen, R. L. 1997. Xylan degradation: A glimpse at microbial diversity. J. Ind. Microbiol. Biotech. 19: 1-6 https://doi.org/10.1038/sj.jim.2900417
  14. Sengupta, S., M. L. Jana, D. Sengupta, and A. K. Naskar. 2000. A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent. Appl. Microbiol. Biotechnol. 53: 732-735 https://doi.org/10.1007/s002530000327
  15. Shirahama, T. and A. S. Cohen. 1966. A Congo red staining method for epoxy-embeded amyloid. J. Histochem. Cytochem. 14: 725-729 https://doi.org/10.1177/14.10.725
  16. Son, Y. J., O. J. Sul, D. K. Chung, I. S. Han, Y. J. Choi, and C. S. Jeong. 1997. Isolation and characterization of Trichoderma sp. C-4 producing cellulase. Kor. J. Appl. Microbiol. Biotechnol. 25: 346-353
  17. Thomson, J. A. 1993. Molecular biology of xylan degradation. FEMS Microbiol. Rev. 104: 65-82 https://doi.org/10.1111/j.1574-6968.1993.tb05864.x
  18. Torronen, A., R. L. Mach, R. Messner, R. Gonzalez, N. Kalkkinen, A. Harkki, and C. P. Kubicek. 1992. The two major xylanases from Trichoderma reesei: Characterization of both enzymes and genes. Biotechnology 10: 1461-1466 https://doi.org/10.1038/nbt1192-1461
  19. Torrone, A and J. Rouvine. 1995. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry 34: 847-856 https://doi.org/10.1021/bi00003a019
  20. Yaguchi, M., C. Roy, D. C. Watson, F. Rollin, L. U. L. Tan, D. J. Senior, and J. N. Saddler. 1992. The amino acid sequence of the 20 kd xylanase from Trichoderma harzianum E58, pp. 435-438. In J. Visser (ed.), Xylans and Xylanases, Elsevier, Amsterdam