References
- Biely, P., C. R. Mackenzie, J. Plus, and H. Schneider. 1986. Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Bio/Technology 4: 731-733 https://doi.org/10.1038/nbt0886-731
- Calmels, T. P. G., F. Martin, H. Durand, and G. Tiraby. 1991. Proteolytic events in processing of secreted proteins in fungi. J. Biotechnol. 17: 51-66 https://doi.org/10.1016/0168-1656(91)90026-R
- Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanases families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23 https://doi.org/10.1016/j.femsre.2004.06.005
- Denis, C. L., J. Ferguson, and E. T. Young. 1983. mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease pon growth on a nonfermentable carbon source. J. Biol. Chem. 258: 1165-1171
- Goller, S. P., D. Schoisswohl, M. Baron, M. Parric, and C. P. Kubicek. 1998. Role of endoproteolytic dibasic protein processing in maturation of secretory proteins in Trichoderma reesei. Appl. Environ. Microbiol. 64: 3202-3208
- de Vries, R. P., H. C. Kester, C. H. Polusen, J. A. Benen, and J. Visser. 2000. Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr. Res. 327: 402-410 https://doi.org/10.1016/S0008-6215(00)00066-5
- Hardjito, L., P. F. Greenfield, and P. L. Lee. 1993. Recombinant protein production via fed-batch culture of the yeast Saccharomyces cerevisiae. Enzyme Microbiol. Technol. 15: 120-126 https://doi.org/10.1016/0141-0229(93)90035-Z
- Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1952. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275
- Mandels, M. and R. E. Anderotti. 1978. The cellulose to cellulase fermentation. Proc. Biochem. 13: 6-113
- Nacken, V., T. Achstetter, and E. Degryse. 1996. Probing the limits of expression levels by varying promoter strength and plasmid copy number in Saccharomyces cerevisiae. Gene 175: 253-260 https://doi.org/10.1016/0378-1119(96)00171-0
- Polizeli, M. L. T. M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591 https://doi.org/10.1007/s00253-005-1904-7
- Pronk, J. T. 2002. Auxotrophic strains in fundamental and applied research. Appl. Environ. Microbiol. 68: 2095-2100 https://doi.org/10.1128/AEM.68.5.2095-2100.2002
- Uffen, R. L. 1997. Xylan degradation: A glimpse at microbial diversity. J. Ind. Microbiol. Biotech. 19: 1-6 https://doi.org/10.1038/sj.jim.2900417
- Sengupta, S., M. L. Jana, D. Sengupta, and A. K. Naskar. 2000. A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent. Appl. Microbiol. Biotechnol. 53: 732-735 https://doi.org/10.1007/s002530000327
- Shirahama, T. and A. S. Cohen. 1966. A Congo red staining method for epoxy-embeded amyloid. J. Histochem. Cytochem. 14: 725-729 https://doi.org/10.1177/14.10.725
- Son, Y. J., O. J. Sul, D. K. Chung, I. S. Han, Y. J. Choi, and C. S. Jeong. 1997. Isolation and characterization of Trichoderma sp. C-4 producing cellulase. Kor. J. Appl. Microbiol. Biotechnol. 25: 346-353
- Thomson, J. A. 1993. Molecular biology of xylan degradation. FEMS Microbiol. Rev. 104: 65-82 https://doi.org/10.1111/j.1574-6968.1993.tb05864.x
- Torronen, A., R. L. Mach, R. Messner, R. Gonzalez, N. Kalkkinen, A. Harkki, and C. P. Kubicek. 1992. The two major xylanases from Trichoderma reesei: Characterization of both enzymes and genes. Biotechnology 10: 1461-1466 https://doi.org/10.1038/nbt1192-1461
- Torrone, A and J. Rouvine. 1995. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry 34: 847-856 https://doi.org/10.1021/bi00003a019
- Yaguchi, M., C. Roy, D. C. Watson, F. Rollin, L. U. L. Tan, D. J. Senior, and J. N. Saddler. 1992. The amino acid sequence of the 20 kd xylanase from Trichoderma harzianum E58, pp. 435-438. In J. Visser (ed.), Xylans and Xylanases, Elsevier, Amsterdam