DOI QR코드

DOI QR Code

Effect of Protective Compounds on the Survival, Electrolyte Leakage, and Lipid Degradation of Freeze-Dried Weissella paramesenteroides LC11 During Storage

  • Yao, Amenan A. (Wallon Center for Industrial Biology, Microbial Technology Unit, University of Liege) ;
  • Wathelet, Bernard (Industrial Biological Chemistry Unit, Gembloux Agricultural University) ;
  • Thonart, Philippe (Wallon Center for Industrial Biology, Microbial Technology Unit, University of Liege)
  • Published : 2009.08.31

Abstract

The effect of cryoprotectants (maltodextrin+glycerol) and cryoprotectants+antioxidant [ascorbic acid and/or butylated hydroxytoluene (BHT)] mixtures on the survival, electrolyte leakage, and lipid degradation of freeze-dried Weissella paramesenteroides LC11 during storage was investigated and compared with that of the control (cells without additives) over a 90-day storage period at 4 or $20^{\circ}C$ in glass tubes with water activity ($a_w$) of 0.23. The survival, electrolyte leakage, and lipid degradation were evaluated through colony counts, electrical conductivity, and thiobarbituric acid reactive substances (TBARS) content, respectively. The fatty acids composition was determined by gas chromatography, in both the total lipid extract and the polar lipid fraction, and compared with that of the control after the 90-day storage period. As the storage proceeded, increases in leakage value and TBARS content, as well as a decrease in viability, were observed. After 90 days of storage, the major fatty acids found in both the total lipid extract and the polar lipid fraction were palmitic (16:0), palmitoleic (16:1), stearic (18:0), oleic (18:1), linoleic (18:2), and linolenic (18:3) acids. The survival, leakage value, TBARS content and 18:2/16:0 or 18:3/16:0 ratio were the greatest for the protected strain held at $4^{\circ}C$. Cells with the cryoprotectants+BHT mixture showed the highest percentage of survival and 18:2/16:0 or 18:3/16:0 ratio in both lipid extracts, as well as the lowest leakage value and TBARS content after the 90-day storage period. Drying cells with the cryoprotectants+BHT mixture considerably slowed down polar lipid degradation and loss of membrane integrity, resulting in improved viability during storage.

Keywords

References

  1. Borsos-Matovina, V. and T. J. Blake. 2001. Seed treatment with the antioxidant Ambiol enhances membrane protection in seedlings exposed to drought and low temperatures. Trees 15: 163-167 https://doi.org/10.1007/s004680000083
  2. Castro, H. P., P. M. Teixeira, and R. Kirby. 1995. Storage of lyophilized cultures of Lactobacillus bulgaricus under different relative humidities and atmospheres. Appl. Microbiol. Biotechnol. 44: 172-176 https://doi.org/10.1007/BF00164498
  3. Castro, H. P., P. M. Teixeira, and R. Kirby R. 1996. Changes in the cell membrane of Lactobacillus bulgaricus during storage following freeze-drying. Biotechnol. Lett. 18: 99-104 https://doi.org/10.1007/BF00137819
  4. Champagne, C. P., F. Mondou, Y. Raymond, and D. Roy. 1996. Effect of polymers and storage temperature on the stability of freeze-dried lactic acid bacteria. Food Res. Int. 29: 555-562 https://doi.org/10.1016/0963-9969(95)00050-X
  5. Coulibaly, I., A. A. Yao, G. Lognay, J. Destain, M.-L. Fauconnier, and P. Thonart. 2008. Survival of freeze-dried Leuconostoc mesenteroides and Lactobacillus plantarum related to their cellular fatty acids composition during storage. Appl. Biochem. Biotechnol. 157: 70-84 https://doi.org/10.1007/s12010-008-8240-1
  6. Halliwell, B. and S. Chirico. 1993. Lipid peroxidation: Its mechanisms, measurement, and significance. Am. Clin. Nutr. 57: 715s-724s https://doi.org/10.1093/ajcn/57.5.715S
  7. Hamoudi, L., J. Goulet, and C. Ratti. 2007. Effect of protective agents on the viability of Geotricum candidum during freezedrying and storage. Food Microbiol. Food Saf. 72: M45-M49 https://doi.org/10.1111/j.1750-3841.2006.00250.x
  8. Hayashi, T., A. Terao, S. Ueda, and M. Namiki. 1985. Red pigment formation by the reaction of oxidized ascorbic acid and protein in a food model system of low moisture content. Agric. Biol. Chem. 49: 3139-3144 https://doi.org/10.1271/bbb1961.49.3139
  9. Heckly, R. J. 1985. Principles of preserving bacteria by freezedrying. Dev. Ind. Microbiol. 26: 379-395
  10. Hurst, A. 1977. Bacterial injury: A review. Can. J. Microbiol. 23: 936-944 https://doi.org/10.1139/m77-139
  11. Ishibashi, N., I. Tatematsu, S. Shimamura, M. Tomita, and S. Okonogi. 1985. Effect of water activity on the viability of freeze-dried bifidobacteria and lactic acid bacteria, pp. 227-232. I. I. R.-I. I. F. Commission C1, Tokyo, Japan
  12. Kostinek, M., I. Specht, V. A. Edward, C. Pinto, M. Egounlety, C. Sossa, et al. 2007. Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures. Int. J. Food Microbiol. 114: 342-351 https://doi.org/10.1016/j.ijfoodmicro.2006.09.029
  13. Kostinek, M., I. Specht, V. A. Edward, U. Schillinger, C. Hertel, W. H. Holzapfel, and C. M. A. P. Franz. 2005. Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of Gari, a traditional African food. Syst. Appl. Microbiol. 28: 527-540 https://doi.org/10.1016/j.syapm.2005.03.001
  14. Lef$\grave{e}$vre, G., M. Beljean-Leymarie, F. Beyerle, D. Bonnefont- Rousselot, J. P. Cristol, P. Th$\acute{e}$rond, and J. Torreilles. 1998. Evaluation de la peroxydation lipidique par le dosage des substances r$\acute{e}$agissant avec l'acide thiobarbiturique. Ann. Biol. Clin. 56: 305-319
  15. Martos, G. I., A. P. Ruiz Holgado, G. Oliver, and G. F. De Valdez. 1999. Use of conductimetry to evaluate Lactobacillus delbrueckii ssp. bulgaricus subjected to freeze-drying. Milchwissenschaft 54: 128-130
  16. Raharjo, S. and J. N. Sofos. 1993. Methodology for measuring malondialdehyde as a product of lipid peroxidation in muscle tissues: A review. Meat Sci. 35: 145-169 https://doi.org/10.1016/0309-1740(93)90046-K
  17. Raharjo, S., J. N. Sofos, and G. R. Schmidt. 1992. Improved speed, specificity, and limit determination of an aqueous acid extraction thiobarbituric acid-C18 method for measuring lipid peroxidation in beef. J. Agric. Food Chem. 40: 2182-2185 https://doi.org/10.1021/jf00023a027
  18. Selmer-Olsen, E., S. E. Birkeland, and T. Sorhaug. 1999. Effect of protective solutes on leakage from and survival of immobilized Lactobacillus subjected to drying, storage and rehydration. J. Appl. Microbiol. 87: 429-437 https://doi.org/10.1046/j.1365-2672.1999.00839.x
  19. St. Angelo, A. J. 1996. Lipid oxidation in foods. Crit. Rev. Food Sci. Nutr. 36: 175-224 https://doi.org/10.1080/10408399609527723
  20. Tarladgis, B. O., A. M. Pearson, and L. R. Jr Dugan. 1964. Chemistry of the 2-thiobarbituric acid test for determination of oxidative rancidity in foods: (II) Formation of the TBAmalonaldehyde complex without acid-heat treatment. J. Sci. Food Agric. 15: 602-607 https://doi.org/10.1002/jsfa.2740150904
  21. Teixeira, P. C., M. H. Castro, F. X. Malcata, and R. M. Kirby. 1995. Survival of Lactobacillus delbrueckii ssp. bulgaricus following spray drying. J. Dairy Sci. 78: 1025-1031 https://doi.org/10.3168/jds.S0022-0302(95)76718-2
  22. van Ginkel, G. and A. Sevanian. 1994. Lipid peroxidationinduced membrane structural alterations. Methods Enzymol. 233: 273-288 https://doi.org/10.1016/S0076-6879(94)33031-X
  23. Vandana, V., M. S. L. Karuna, P. Vijayalakshmi, and R. B. N. Prasad. 2001. A simple method to enrich phospholipid content in commercial soybean lecithin. J. Am. Oil Chem. Soc. 78: 555-556 https://doi.org/10.1007/s11746-001-0303-2
  24. Wang, Y.-C., R.-C. Yu, and C.-C. Chou. 2004. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydratation and storage. Int. J. Food Microbiol. 93: 209-217 https://doi.org/10.1016/j.ijfoodmicro.2003.12.001
  25. Yao, A. A., I. Coulibaly, G. Lognay, M.-L. Fauconnier, and P. Thonart. 2008. Impact of polyunsaturated fatty acid degradation on survival and acidification activity of freeze-dried Weissella paramesenteroides LC11 during storage. Appl. Microbiol. Biotechnol. 79: 1045-1052 https://doi.org/10.1007/s00253-008-1497-z
  26. Yao, A. A., F. Bera, C. M. A. P. Franz, W. H. Holzapfel, and P. Thonart. 2008. Survival rate analysis of freeze-dried lactic acid bacteria using the Arrhenius and z-value models. J. Food Prot. 71: 431-434 https://doi.org/10.4315/0362-028X-71.2.431
  27. Zhao, G. and G. Zhang. 2005. Effect of protective agents, freezing temperature, rehydratation media on viability of malolactic bacteria subjected to freeze- rying. J. Appl. Microbiol. 99: 333- 338 https://doi.org/10.1111/j.1365-2672.2005.02587.x

Cited by

  1. Damaging mechanisms of chilling- and salt stress to Arachis hypogaea L. leaves vol.49, pp.1, 2011, https://doi.org/10.1007/s11099-011-0005-3
  2. Tocopherol and Ascorbate Have Contrasting Effects on the Viability of Microencapsulated Lactobacillus rhamnosus GG vol.59, pp.19, 2009, https://doi.org/10.1021/jf202358m
  3. Baker's Yeast Behavior during Vacuum Agitated Contact Drying vol.36, pp.10, 2013, https://doi.org/10.1002/ceat.201300253
  4. Optimisation of bambara groundnut water extract and skim milk composition as cryoprotectant for increasing cell viability of Lactobacillus spp. using response surface methodology vol.51, pp.12, 2016, https://doi.org/10.1111/ijfs.13249
  5. Enhancement of viability, acid, and bile tolerance and accelerated stability in lyophilized Weissella cibaria   JW 15 with protective agents vol.6, pp.7, 2009, https://doi.org/10.1002/fsn3.762
  6. Comparing the functional and pasting properties of gari and the sensory attributes of the eba produced using backslopped and spontaneous fermentation methods vol.7, pp.1, 2009, https://doi.org/10.1080/23311932.2021.1883827