DOI QR코드

DOI QR Code

Baicalein Induces Programmed Cell Death in Candida albicans

  • Dai, Bao-Di (School of Pharmacy, Second Military Medical University) ;
  • Cao, Ying-Ying (School of Pharmacy, Second Military Medical University) ;
  • Huang, Shan (School of Pharmacy, Second Military Medical University) ;
  • Xu, Yong-Gang (School of Pharmacy, Second Military Medical University) ;
  • Gao, Ping-Hui (School of Pharmacy, Second Military Medical University) ;
  • Wang, Yan (School of Pharmacy, Second Military Medical University) ;
  • Jiang, Yuan-Ying (School of Pharmacy, Second Military Medical University)
  • Published : 2009.08.31

Abstract

Recent evidence has revealed the occurrence of an apoptotic phenotype in Candida albicans that is inducible with environmental stresses such as acetic acid, hydrogen peroxide, and amphotericin B. In the present study, we found that the Chinese herbal medicine Baicalein (BE), which was one of the skullcapflavones, can induce apoptosis in C. albicans. The apoptotic effects of BE were detected by flow cytometry using Annexin V-FITC and DAPI, and it was confirmed by transmission electron microscopy analysis. After exposure to 4 ${\mu}g$/ml BE for 12 h, about 10% of C. albicans cells were apoptotic. Both the increasing intracellular levels of reactive oxygen species (ROS) and upregulation of some redox-related genes (CAP1, SOD2, TRR1) were observed. Furthermore, we compared the survivals of CAP1 deleted, wild-type, and overexpressed strains and found that Cap1p attenuated BE-initiated cell death, which was coherent with a higher mRNA level of the CAP1 gene. In addition, the mitochondrial membrane potential of C. albicans cells changed significantly (p<0.001) upon BE treatment compared with control. Taken together, our results indicated that BE treatment induced apoptosis in C. albicans cells, and the apoptosis was associated with the breakdown of mitochondrial membrane potential.

Keywords

References

  1. Alarco, A. M. and M. Raymond. 1999. The b-Zip transcription factor Cap1p is involved in multiple resistance and oxidative stress response in Candida albicans. J. Bacteriol. 181: 700-708
  2. Almeida, T., M. Marques, D. Mojzita, M. A. Amorim, R. D. Silva, B. Almeida, et al. 2008. Isc1p plays a key role in hydrogen peroxide resistance and chronological lifespan through modulation of iron levels and apoptosis. Mol. Biol. Cell 19: 865-876 https://doi.org/10.1091/mbc.E07-06-0604
  3. Baek, Y. U., Y. R. Kim, H. S. Yim, and S. O. Kang. 2004. Disruption of $\gamma$-glutamylcysteine synthetase results in absolute glutathione auxotrophy and apoptosis in Candida albicans. FEBS Lett. 556: 47-52 https://doi.org/10.1016/S0014-5793(03)01363-2
  4. Braun, R. J., H. Zischka, F. Madeo, T. Eisenberg, S. Wissing, S. Buttner, S. M. Engelhard, D. Büringer, and M. Ueffing. 2006. Crucial mitochondrial impairment upon CDC48 mutation apoptotic yeast. J. Biol. Chem. 281: 25757-25767 https://doi.org/10.1074/jbc.M513699200
  5. Cao, Y. Y., B. D. Dai, Y. Wang, S. Huang, Y. G. Xu, Y. B. Cao, P. H. Gao, Z. Y. Zhu, and Y. Y. Jiang. 2008. In vitro activity of baicalein against Candida albicans biofilms. Int. J. Antimicrob. Agents 32: 73-77 https://doi.org/10.1016/j.ijantimicag.2008.01.026
  6. Cao, Y. Y., Y. Wang, B. D. Dai, B. Wang, H. Zhang, Z. Y. Zhu, et al. 2008. Trehalose is an important mediator of Cap1p oxidative stress response in Candida albicans. Biol. Pharm. Bull. 31: 421-425 https://doi.org/10.1248/bpb.31.421
  7. Carmel-Hare, O. and G. Storz. 2000. Roles of the glutathioneand thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54: 439-461 https://doi.org/10.1146/annurev.micro.54.1.439
  8. Chang, P. C., H. Y. Li, H. J. Tang, J. W. Liu, J. J. Wang, and Y. C. Chuang. 2007. In vitro synergy of baicalein and gentamicin against vancomycin-resistant Enterococcus. J. Microbiol. Immunol. Infect. 40: 56-61
  9. Chang, W. T., Z. H. Shao, J. J. Yin, S. Mehendale, C. Z. Wang, Y. Qin, et al. 2007. Comparative effects of flavonoids on oxidant scavenging and ischemia-reperfusion injury in cardiomyocytes. Eur. J. Pharmacol. 566: 58-66 https://doi.org/10.1016/j.ejphar.2007.03.037
  10. Chiou, C. C., A. H. Groll, and T. J. Walsh. 2000. New drugs and novel targets for treatment of invasive fungal infections in patients with cancer. Oncologist 5: 120-122 https://doi.org/10.1634/theoncologist.5-2-120
  11. Cowen, L. E., J. B. Anderson, and L. M. Kohn. 2002. Evolution of drug resistance in Candida albicans. Annu. Rev. Microbiol. 56: 139-165 https://doi.org/10.1146/annurev.micro.56.012302.160907
  12. Fonzi, W. A. and M. Y. Irwin. 1993. Isogenic strain construction and gene mapping in Candida albicans. Genetics 134: 717- 728
  13. Garber, G. 2001. An overview of fungal infections. Drugs 61 (Suppl.1): 1-12
  14. Grant, C. M. 2001. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol. Microbiol. 39: 533-541 https://doi.org/10.1046/j.1365-2958.2001.02283.x
  15. Guaragnella, N., C. Pereira, M. J. Sousa, L. Antonacci, S. Passarella, M. Côrte-Real, and E. Marra. 2006. YCA1 participates in the acetic acid induced yeast programmed cell death also in a manner unrelated to its caspase-like activity. FEBS Lett. 580: 6880-6884 https://doi.org/10.1016/j.febslet.2006.11.050
  16. Ishige, K., D. Schubert, and Y. Sagara. 2001. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med. 29: 433-446 https://doi.org/10.1016/S0891-5849(00)00498-6
  17. Lapchak, P. A., P. Maher, D. Schubert, and J. A. Zivin. 2007. Baicalein, an antioxidant 12/15-lipoxygenase inhibitor, improves clinical rating scores following multiple infarct embolic strokes. Neuroscience 150: 585-591 https://doi.org/10.1016/j.neuroscience.2007.09.033
  18. Lin, H. Y., S. C. Shen, C. W. Lin, L. Y. Yang, and Y. C. Chen. 2007. Baicalein inhibition of hydrogen peroxide-induced apoptosis via ROS-dependent heme oxygenase 1 gene expression. Biochim. Biophys. Acta 1773: 1073-1086 https://doi.org/10.1016/j.bbamcr.2007.04.008
  19. Lin, Y. T., J. S. Yang, H.J. Lin, T. W. Tan, N. Y. Tang, J. H. Chaing, Y. H. Chang, H. F. Lu, and J. G. Chung. 2007. Baicalein induces apoptosis in SCC-4 human tongue cancer cells via a Ca$^{2+}$-dependent mitochondrial pathway. In Vivo 21: 1053-1058
  20. Ludovico, P., F. Rodrigues, A. Almeida, M. T. Silva, A. Barrientos, and M. Corte-Real. 2002. Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol. Biol. Cell 13: 2598-2606 https://doi.org/10.1091/mbc.E01-12-0161
  21. Luk, E., M. Yang, L. T. Jensen, Y. Bourbonnais, and V. C. Culotta. 2005. Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae. J. Biol. Chem. 280: 22715-22720 https://doi.org/10.1074/jbc.M504257200
  22. Maertens, J., M. Vrebos, and M. Boogaerts. 2001. Assessing risk factors for systemic fungal infections. Eur. J. Cancer Care (Engl) 10: 56-62 https://doi.org/10.1046/j.1365-2354.2001.00241.x
  23. Mazzoni, C., E. Herker, V. Palermo, H. Jungwirth, T. Eisenberg, F. Madeo, and C. Falcone. 2005. Yeast caspase 1 links messenger RNA stability to apoptosis in yeast. EMBO Rep. 6: 1076-1081 https://doi.org/10.1038/sj.embor.7400514
  24. Ono, K., H. Nakane, M. Fukushima, J. C. Chermann, and F. Barre-Sinoussi. 1990. Differential inhibitory effects of various flavonoids on the activities of reverse transcriptase and cellular DNA and RNA polymerase. Eur. J. Biochem. 5: 469-476
  25. Phillips, A. J., J. D. Crowe, and M. Ramsdale. 2006. Ras pathway signaling accelerates programmed cell death in the pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. U.S.A. 103: 726-731 https://doi.org/10.1073/pnas.0506405103
  26. Phillips, A. J., I. Sudbery, and M. Ramsdale. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. U.S.A. 100: 14327- 14332 https://doi.org/10.1073/pnas.2332326100
  27. Pozniakovsky, A. I., D. A. Knorre, O. V. Markova, A. A. Hyman, V. P. Skulachev, and F. F. Severin. 2005. Role of mitochondria in the pheromone- and amiodarone-induced programmed cell death of yeast. J. Cell Biol. 168: 257- 269 https://doi.org/10.1083/jcb.200408145
  28. Trotter, E. W. and C. M. Grant. 2003. Non-reciprocal regulation of the redox status of the glutathione-glutaredoxin and thioredoxin systems. EMBO Rep. 4: 184-188 https://doi.org/10.1038/sj.embor.embor729
  29. Tu, I. H., H. T. David Yen, H. W. Cheng, and J. H. Chiu. 2008. Baicalein protects chicken embryonic cardiomyocyte against hypoxia-reoxygenation injury via $\mu$- and $\delta$- but not $\kappa$-opioid receptor signaling. Eur. J. Pharmacol. 58: 251-258
  30. Tyler, D. D. 1975. Polarographic assay and intracellular distribution of superoxide dismutase in rat liver. Biochem. J. 147: 493-504 https://doi.org/10.1042/bj1470493
  31. van Leyen, K., H. Y. Kim, S. R. Lee, G. Jin, K. Arai, and E. H. Lo. 2006. Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke 37: 3014-3018 https://doi.org/10.1161/01.STR.0000249004.25444.a5
  32. Wang, Y., Y. Y. Cao, Y. B. Cao, D. J. Wang, X. M. Jia, X. P. Fu, et al. 2007. Cap1p plays regulation roles in redox, energy metabolism and substance transport: An investigation on Candida albicans under normal culture condition. Front. Biosci. 12: 145-153 https://doi.org/10.2741/2055
  33. Wang, Y., Y. Y. Cao, X. M. Jia, Y. B. Cao, P. H. Gao, X. P. Fu, K. Ying, W. S. Chen, and Y. Y. Jiang. 2006. Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans. Free Radic. Biol. Med. 40: 1201-1209 https://doi.org/10.1016/j.freeradbiomed.2005.11.019
  34. Wissing, S., P. Ludovico, E. Herker, S. Büttner, S. M. Engelhardt, T. Decker, et al. 2004. An AIF orthologue regulates apoptosis in yeast. J. Cell Biol. 166: 969-974 https://doi.org/10.1083/jcb.200404138
  35. Wu, J. A., A. S. Attele, L. Zhang, and C. S. Yuan. 2001. Anti- HIV activity of medinal herbs: Usage and potential development. Am. J. Chin. Med. 29: 69-81 https://doi.org/10.1142/S0192415X01000083
  36. Yang, D., H. Hu, and S. Huang. 2000. Study on the inhibitory activity, in vitro, of baicalein and baicalin against skin fungi and bacteria. Zhong Yao Cai 23: 272-274
  37. Zhang, X., M. De Micheli, S. T. Coleman, D. Sanglard, and W. S. Moye-Rowley. 2000. Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Mol. Microbiol. 36: 618-629 https://doi.org/10.1046/j.1365-2958.2000.01877.x

Cited by

  1. Antifungal Activity of Baicalein Against Candida krusei Does Not Involve Apoptosis vol.170, pp.6, 2009, https://doi.org/10.1007/s11046-010-9341-2
  2. Enhancement effect of N-methyl-N″-dodecylguanidine on the vacuole-targeting fungicidal activity of amphotericin B against the pathogenic fungus Candida albicans vol.64, pp.7, 2009, https://doi.org/10.1038/ja.2011.31
  3. Combination of Baicalein and Amphotericin B Accelerates Candida albicans Apoptosis vol.34, pp.2, 2009, https://doi.org/10.1248/bpb.34.214
  4. Metergoline-induced cell death in Candida krusei vol.115, pp.3, 2009, https://doi.org/10.1016/j.funbio.2011.01.001
  5. Flavone-catalyzed apoptosis in Scutellariabaicalensis vol.72, pp.8, 2009, https://doi.org/10.1016/j.phytochem.2011.02.009
  6. In vitro antifungal activity of the flavonoid baicalein against Candida species vol.61, pp.12, 2009, https://doi.org/10.1099/jmm.0.047852-0
  7. Phenoptosis in yeasts vol.77, pp.7, 2009, https://doi.org/10.1134/s0006297912070097
  8. Hsp90 Is Involved in Apoptosis of Candida albicans by Regulating the Calcineurin-Caspase Apoptotic Pathway vol.7, pp.9, 2009, https://doi.org/10.1371/journal.pone.0045109
  9. Cap1p attenuates the apoptosis of Candida?albicans vol.280, pp.11, 2009, https://doi.org/10.1111/febs.12251
  10. Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms vol.6, pp.1, 2009, https://doi.org/10.4155/fmc.13.189
  11. Apoptotic‐like phenotype triggered by hydrogen peroxide and amphotericin B in the fungus Rhizopus arrhizus vol.57, pp.suppl3, 2009, https://doi.org/10.1111/myc.12240
  12. Activity of Polyphenolic Compounds against Candida glabrata vol.20, pp.10, 2009, https://doi.org/10.3390/molecules201017903
  13. Beauvericin counteracted multi-drug resistant Candida albicans by blocking ABC transporters vol.1, pp.3, 2009, https://doi.org/10.1016/j.synbio.2016.10.001
  14. The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans vol.26, pp.13, 2009, https://doi.org/10.1016/j.bmcl.2016.05.013
  15. Antifungal Activity of the Ethanol Extract from Flos Rosae Chinensis with Activity against Fluconazole-Resistant Clinical Candida vol.2017, pp.None, 2009, https://doi.org/10.1155/2017/4780746
  16. Guidelines and recommendations on yeast cell death nomenclature vol.5, pp.1, 2018, https://doi.org/10.15698/mic2018.01.607
  17. Antifungal activity and mechanism of action of Ou-gon ( Scutellaria root extract) components against pathogenic fungi vol.9, pp.None, 2009, https://doi.org/10.1038/s41598-019-38916-w
  18. Looking for New Antifungal Drugs from Flavonoids: Impact of the Genetic Diversity of Candida albicans on the in-vitro Response vol.26, pp.27, 2009, https://doi.org/10.2174/0929867325666171226102700
  19. Validation of an LC–MS/MS method for simultaneous detection of diverse components of Qinxing Qingre Zhike Granule in rat plasma and its application to pharmacokinetic study after oral administra vol.33, pp.7, 2019, https://doi.org/10.1002/bmc.4524
  20. Anti-Fungal Efficacy and Mechanisms of Flavonoids vol.9, pp.2, 2020, https://doi.org/10.3390/antibiotics9020045
  21. The killer yeast Wickerhamomyces anomalus Cf20 exerts a broad anti-Candida activity through the production of killer toxins and volatile compounds vol.58, pp.8, 2009, https://doi.org/10.1093/mmy/myaa011